// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/eager/backward.h" #include #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/grad_node_info.h" #include "paddle/fluid/eager/grad_tensor_holder.h" #include "paddle/fluid/eager/utils.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler/event_tracing.h" #include "glog/logging.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/errors.h" #include "paddle/phi/kernels/autotune/switch_autotune.h" namespace egr { /* * GeneralGrad is Helpper class to implement custom grad operation between * outputs and inputs. * * **/ class GeneralGrad { public: static GeneralGrad& Instance() { return *general_grad_; } // Get inputs's / no_grad_vars's GradNodes and InputMeta Info void GetTargetNodesInfo( const std::vector& inputs, bool is_no_grad_vars) { std::string msg = is_no_grad_vars ? "no_grad_vars" : "inputs"; VLOG(6) << "Running in GetTargetNodesInfo."; if (!inputs.empty()) { VLOG(6) << msg << " are not empty."; size_t num_inputs = inputs.size(); for (size_t i = 0; i < num_inputs; i++) { AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(inputs[i]); auto* target_node = auto_grad_meta->GetMutableGradNode().get(); if (orig_to_copied_node_mapping_.count(target_node)) { target_node = orig_to_copied_node_mapping_[target_node].get(); } else { VLOG(6) << "Unable to find target node in " "orig_to_copied_node_mapping_, likely indicating an " "unused input"; } PADDLE_ENFORCE_NOT_NULL(target_node, paddle::platform::errors::Fatal( "There is no grad op for %s:[%d] or it's" "stop_gradient=True.", msg, i)); if (is_no_grad_vars) { (no_grad_var_nodes_inputmeta_map)[target_node] = auto_grad_meta; } else { // normal input (input_target_nodes_inputmeta_map)[target_node] = auto_grad_meta; } } } } // Purify potential_startup_nodes, remove nodes those are the same as // input_target_nodes void PurifyPotentialStartUpNodes() { VLOG(6) << "Running in PurifyPotentialStartUpNodes"; if (input_target_nodes_inputmeta_map.empty()) return; std::unordered_set potential_startup_nodes_to_be_erased; for (auto startup_op : potential_startup_nodes) { auto iter = input_target_nodes_inputmeta_map.find(startup_op); if (iter != input_target_nodes_inputmeta_map.end()) { potential_startup_nodes_to_be_erased.emplace(iter->first); } } if (!potential_startup_nodes_to_be_erased.empty()) { for (auto nodes : potential_startup_nodes_to_be_erased) { potential_startup_nodes.erase(nodes); } } } // Remove some nodes those doesn't need to be // stored in potential_stop_nodes、potential_startup_nodes void UpdateGraphInfo() { // Updated potential_sotp_nodes by depending_nodes, // make sure the path from root to target_node is ok std::unordered_set _startup_ops; VLOG(6) << "Running in UpdateGraphInfo"; std::queue queue; for (auto& target_nodes_inputmeta_pair : input_target_nodes_inputmeta_map) { queue.emplace(target_nodes_inputmeta_pair.first); } while (!queue.empty()) { auto* target_node = queue.front(); queue.pop(); if (!(depending_nodes)[target_node].empty()) { auto precedding_nodes = (depending_nodes)[target_node]; for (auto pre_nodes : precedding_nodes) { queue.emplace(pre_nodes); if (potential_stop_nodes.find(pre_nodes) != potential_stop_nodes.end()) { potential_stop_nodes.erase(pre_nodes); } } } else { // startup_ops have no precedding nodes VLOG(6) << "Emplace _startup_ops"; _startup_ops.emplace(target_node); } } // Purify potential_startup_nodes again, remove some // potential startup_nodes that unreach to input target nodes if (!_startup_ops.empty()) { std::unordered_set potential_startup_nodes_to_be_erased; for (auto node : potential_startup_nodes) { if (_startup_ops.count(node) == 0) { VLOG(6) << "Set up potential_startup_nodes_to_be_erased"; potential_startup_nodes_to_be_erased.emplace(node); } } if (!potential_startup_nodes_to_be_erased.empty()) { for (auto node : potential_startup_nodes_to_be_erased) { VLOG(6) << "Erase nodes in potential_startup_nodes_to_be_erased"; potential_startup_nodes.erase(node); } } } } // Get Graph Info Betweent input target GradNode and outputs, // record depending_nodes、potential_stop_nodes、potential_startup_nodes void GetGraphInfoBetweenTargets(const std::queue& init_queue) { VLOG(6) << "Runing In GetGraphInfoBetweenTargets"; // Calculate in_degree for each node std::unordered_map node_in_degree_map; // Copy nodes std::queue queue = init_queue; std::unordered_set visited; // Visit each node exactly once in any order while (!queue.empty()) { GradNodeBase* node = queue.front(); queue.pop(); if (visited.count(node)) { continue; } visited.insert(node); // Check node is target_nodes or not, if node is not target_node, // all the next_node will be marked in potential_stop_nodes bool is_potential_stop_nodes = input_target_nodes_inputmeta_map.count(node); // Find and append next nodes const paddle::small_vector, kSlotSmallVectorSize>& metas = node->OutputMeta(); for (const auto& meta_list : metas) { for (const GradSlotMeta& meta : meta_list) { const auto& edge = meta.GetEdge(); GradNodeBase* next_node = edge.GetMutableGradNode().get(); // Next node could be nullptr if it is leaf tensor with no // AccumulationNode attached // Or it could also originated from dispensable inputs if (!next_node) continue; // if node not in input_target_nodes, // all the next_nodes of current node will be inserted to // potential_stop_node if (is_potential_stop_nodes) { potential_stop_nodes.emplace(next_node); } // Update in_degree if (!node_in_degree_map.count(next_node)) node_in_degree_map[next_node] = 0; node_in_degree_map[next_node]++; // Record depending relationship (depending_nodes)[next_node].emplace(node); queue.push(next_node); } } } // Update Graph Info, remove some nodes in // potential_stop_nodes、potential_startup_nodes、 UpdateGraphInfo(); } void ModifyReadyQueue(std::queue* queue) { std::queue tmp_queue; for (auto nodes : potential_startup_nodes) { tmp_queue.emplace(nodes); } tmp_queue.swap(*queue); } // Set result for input target grad_var when potential_startup_nodes is empty void SetResultForInputTargetVar( const std::unordered_map>& node_input_buffers_dict) { if (potential_startup_nodes.size() == 0) { for (auto input_target_node : *GetInPutTargetNodesInputMetaMap()) { // out rank_info of forward op auto rank_info = input_target_node.second->OutRankInfo(); auto iter = node_input_buffers_dict.find(input_target_node.first); if (iter != node_input_buffers_dict.end()) { auto& target_result = (iter->second)->Buffers()[rank_info.first][rank_info.second]; // save the target result results_map[input_target_node.first] = target_result; } } } } // Set input target grad_var from node_input_buffer by inputmeta void SetResultForInputTargetVar(GradTensorHolder input_buffers, GradNodeBase* node) { auto iter = GetInPutTargetNodesInputMetaMap()->find(node); if (iter != GetInPutTargetNodesInputMetaMap()->end()) { VLOG(6) << "Get target result by by inputmeta"; // out rank_info of forward op auto rank_info = (iter->second)->OutRankInfo(); // rank_info is a pair, first means slot_id, second means rank. auto& target_result = input_buffers.Buffers()[rank_info.first][rank_info.second]; // save the target result results_map[node] = target_result; } } std::vector GetResults( const std::vector& inputs, bool allow_unused, bool create_graph) { VLOG(6) << "Running in GetResults"; if (inputs.empty()) return {}; std::vector results; results.reserve(inputs.size()); for (size_t i = 0; i < inputs.size(); ++i) { auto& input = inputs[i]; AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(input); auto* target_node = auto_grad_meta->GetMutableGradNode().get(); if (orig_to_copied_node_mapping_.count(target_node)) { target_node = orig_to_copied_node_mapping_[target_node].get(); } else { VLOG(6) << "Unable to find target node in " "orig_to_copied_node_mapping_, likely indicating an unused " "input"; } auto iter = results_map.find(target_node); if (iter != results_map.end()) { // set StopGradient = !create_graph AutogradMeta* tensor_auto_grad_meta = EagerUtils::autograd_meta(&(iter->second)); tensor_auto_grad_meta->SetStopGradient(!create_graph); results.emplace_back(iter->second); } else { PADDLE_ENFORCE_EQ(allow_unused, true, paddle::platform::errors::InvalidArgument( "The %d-th input does not appear in the backward " "graph. Please check the input tensor or set " "allow_unused=True to get None result.", i)); results.emplace_back(); } } Clear(); return results; } void PreparedForGeneralGrad( const std::vector& inputs, const std::vector& no_grad_vars, std::queue* queue, const std::unordered_map>& node_input_buffers_dict) { // Get no_grad_vars's GradNodes and InputMeta Info GetTargetNodesInfo(no_grad_vars, true /* is_no_grad_vars */); // Get inputs's GradNodes and InputMeta Info GetTargetNodesInfo(inputs, false /* is_no_grad_vars */); // Purify potential_startup_ops, remove those nodes that are the same as // input_target_nodes PurifyPotentialStartUpNodes(); // Get Graph Info Betweent input target gradnode and outputs // Record the depending_nodes and // potential_stop_nodes、potential_startup_nodes GetGraphInfoBetweenTargets(*queue); // Reset queue. Queue is empty only when // 1.input equals to output. 2.input can not reach to output. ModifyReadyQueue(queue); // Set result for input target grad_var when queue is empty if (queue->empty()) SetResultForInputTargetVar(node_input_buffers_dict); } bool IsPotentialStopNodes(GradNodeBase* node) { return potential_stop_nodes.count(node); } std::unordered_map* GetNoGradVarNodesInputMetaMap() { return &no_grad_var_nodes_inputmeta_map; } std::unordered_map* GetInPutTargetNodesInputMetaMap() { return &input_target_nodes_inputmeta_map; } std::unordered_set* GetPotentialStopNodes() { return &potential_stop_nodes; } std::unordered_set* GetPotentialStartupNodes() { return &potential_startup_nodes; } void Clear() { no_grad_var_nodes_inputmeta_map.clear(); input_target_nodes_inputmeta_map.clear(); potential_startup_nodes.clear(); potential_stop_nodes.clear(); depending_nodes.clear(); results_map.clear(); copied_grad_nodes_.clear(); orig_to_copied_node_mapping_.clear(); } GradNodeBase* CopyGradNode(const std::shared_ptr& orig_node) { if (orig_to_copied_node_mapping_.count(orig_node.get())) { return orig_to_copied_node_mapping_[orig_node.get()].get(); } std::shared_ptr copied_node = orig_node->Copy(); // Save node and update mapping orig_to_copied_node_mapping_[orig_node.get()] = copied_node; copied_grad_nodes_.push_back(copied_node); return copied_node.get(); } void ReconstructBackwardGraph( const std::queue& orig_init_queue) { std::queue queue = orig_init_queue; std::unordered_set visited; // BFS and recursively copy the grad nodes while (!queue.empty()) { GradNodeBase* orig_node = queue.front(); queue.pop(); if (visited.count(orig_node)) { continue; } visited.insert(orig_node); PADDLE_ENFORCE( orig_to_copied_node_mapping_.count(orig_node), paddle::platform::errors::Fatal( "Cannot reconstruct backward graph," "unable to find copied target for certain grad node.")); GradNodeBase* copied_node = orig_to_copied_node_mapping_[orig_node].get(); const paddle::small_vector, kSlotSmallVectorSize>& orig_meta = orig_node->OutputMeta(); paddle::small_vector, kSlotSmallVectorSize>& copied_edges = copied_node->MutableOutputMeta(); for (size_t i = 0; i < orig_meta.size(); i++) { for (size_t j = 0; j < orig_meta[i].size(); j++) { const Edge& orig_edge = orig_meta[i][j].GetEdge(); Edge& copied_edge = copied_edges[i][j].GetMutableEdge(); std::shared_ptr orig_next_node = orig_edge.GetMutableGradNode(); if (!orig_next_node) continue; // Copy Next Node std::shared_ptr copied_next_node; if (orig_to_copied_node_mapping_.count(orig_next_node.get())) { copied_next_node = orig_to_copied_node_mapping_[orig_next_node.get()]; } else { copied_next_node = orig_next_node->Copy(); orig_to_copied_node_mapping_[orig_next_node.get()] = copied_next_node; copied_grad_nodes_.push_back(copied_next_node); } // Update Edge's Grad Node copied_edge.SetGradNode(copied_next_node); // Update BFS queue queue.push(orig_next_node.get()); } } } } private: GeneralGrad() = default; static GeneralGrad* general_grad_; // no_grad_vars's GradNode and GradNode's InputMeta. std::unordered_map no_grad_var_nodes_inputmeta_map; // inputs's GradNode and GradNode's InputMeta. std::unordered_map input_target_nodes_inputmeta_map; // Record all the potential startup_nodes, will be changed. std::unordered_set potential_startup_nodes; // Record all the potential stop nodes, will be changed. std::unordered_set potential_stop_nodes; std::unordered_map /* pre nodes */> depending_nodes; std::unordered_map results_map; std::vector> copied_grad_nodes_; std::unordered_map> orig_to_copied_node_mapping_; DISABLE_COPY_AND_ASSIGN(GeneralGrad); }; std::unordered_map getInDegreeMap( const std::queue& init_queue) { // Calculate in_degree for each node // We can completely remove this pass, if in_degree were set during forward // pass std::unordered_map node_in_degree_map; // Copy nodes std::queue queue = init_queue; std::unordered_set visited; // Visit each node exactly once in any order while (!queue.empty()) { GradNodeBase* node = queue.front(); queue.pop(); if (visited.count(node)) { continue; } visited.insert(node); PADDLE_ENFORCE_NOT_NULL( node, paddle::platform::errors::Fatal( "We got null node when we traverse the backward graph, and this " "should not happened please check your code and contact us.")); // Find and append next nodes const paddle::small_vector, kSlotSmallVectorSize>& metas = node->OutputMeta(); for (const auto& meta_list : metas) { for (const GradSlotMeta& meta : meta_list) { const auto& edge = meta.GetEdge(); GradNodeBase* next_node = edge.GetMutableGradNode().get(); // Next node could be nullptr if it is leaf tensor with no // AccumulationNode attached // Or it could also originated from dispensable inputs if (!next_node) continue; // Update in_degree if (!node_in_degree_map.count(next_node)) node_in_degree_map[next_node] = 0; node_in_degree_map[next_node]++; queue.push(next_node); } } } return node_in_degree_map; } // Enforce GradNode has TensorWrappers as Input void EnforceGradNodeHasInput(GradNodeBase* node) { VLOG(6) << "Running in EnforceGradNodeHasInput"; PADDLE_ENFORCE_NE( node->IsTensorWrappersCleared(), true, paddle::platform::errors::Fatal( "The TensorWrappers of %s do not exist. This may be because:\n" "You calculate backward twice for the same subgraph without " "setting retain_graph=True. Please set retain_graph=True in the " "first backward/grad call.\n", node->name())); } void DuplicateCheck(const std::vector& inputs, bool is_input) { std::unordered_set visisted_ins; std::string msg = is_input ? "inputs" : "outputs"; for (auto in : inputs) { AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(in); PADDLE_ENFORCE_EQ( visisted_ins.count(auto_grad_meta), 0, paddle::platform::errors::AlreadyExists( "%s contain duplicate tensor %s, please check %s carefully.", msg, in.name(), msg)); visisted_ins.insert(auto_grad_meta); } } GeneralGrad* GeneralGrad::general_grad_ = new GeneralGrad(); std::vector RunBackward( const std::vector& tensors, // output const std::vector& grad_tensors, bool retain_graph, bool create_graph = false, const std::vector& inputs = {}, bool allow_unused = false, const std::vector& no_grad_vars = {}) { VLOG(6) << "Start Backward"; // *Gradient Hook should happen at node-level // *Inplace version check should perform at node-level // *Cross-batch accumulation happens at forward pass // GeneralGrad bool is_general_grad = !inputs.empty(); if (is_general_grad) GeneralGrad::Instance().Clear(); /* --- Initialization --- */ // 1. Init queue with starting nodes // 2. Prepare initial input buffers std::queue queue; std::queue orig_queue; std::unordered_map> node_input_buffers_dict; for (size_t i = 0; i < tensors.size(); i++) { const paddle::experimental::Tensor& tensor = tensors[i]; AutogradMeta* auto_grad_meta = EagerUtils::nullable_autograd_meta(tensor); if (auto_grad_meta == nullptr) { VLOG(3) << "Skip auto grad since there is no grad op for var or loss is " "stop_gradient=True: " << tensor.name(); continue; } // Get grad input info from target tensors auto input_info = auto_grad_meta->OutRankInfo(); VLOG(2) << "Out Rank of Tensor is slot: " << input_info.first << ", rank: " << input_info.second; // Get target GradNodeBase from target tensors auto shared_grad_node = auto_grad_meta->GetMutableGradNode(); if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr || auto_grad_meta->StopGradient()) { VLOG(3) << "Skip auto grad since there is no grad op for var or loss is " "stop_gradient=True: " << tensor.name(); continue; } // TODO(zhanlve): Copy and Modify GradNode if is_general_grad GradNodeBase* grad_node = shared_grad_node.get(); if (is_general_grad) { // Save orig grad node orig_queue.push(grad_node); // Replace grad_node with copied grad_node grad_node = GeneralGrad::Instance().CopyGradNode(shared_grad_node); // Record potential startup grad node GeneralGrad::Instance().GetPotentialStartupNodes()->insert(grad_node); } // Prepare GradTensorHolder if (!node_input_buffers_dict.count(grad_node)) { VLOG(6) << "Create Value for grad input tensor " << i << " of grad node: " << grad_node->name(); node_input_buffers_dict[grad_node] = std::make_unique(grad_node->InputMeta()); } bool copy_from_grad_t = grad_tensors.size() > 0 && grad_tensors[i].initialized(); if (copy_from_grad_t) { PADDLE_ENFORCE( grad_tensors.size() == tensors.size(), paddle::platform::errors::Fatal( "Detected size mismatch between tensors and grad_tensors" "grad_tensors should either have " "size = 0 or same size as tensors.")); // Feed given tensor if it's provided VLOG(6) << "Fill grad input tensor " << i << "with give grad tensor"; // Deep copy node_input_buffers_dict[grad_node]->CopyValueFromTensor( input_info.first, input_info.second, grad_tensors[i]); } else { VLOG(6) << "Fill grad input tensor " << i << " with 1.0"; // Initialize tensor with 1.0 // Forward Tensor "tensor" is passed to indicate tensortype, datatype and // dims // GradTensorHolder will initialize another tensor with same tensortype, // datatype and dims but filled with 1.0 node_input_buffers_dict[grad_node]->CopyValueFromTensor( input_info.first, input_info.second, tensor, true /*fill_one=true*/); } // Prepare queue, potential startup_nodes queue.push(grad_node); } if (is_general_grad) { // Copy Backward Graph GeneralGrad::Instance().ReconstructBackwardGraph(orig_queue); } VLOG(6) << "Update In degree Map for backward"; // 3. Compute in_degree for each node std::unordered_map node_in_degree_map = getInDegreeMap(queue); if (is_general_grad) { // Prepare several vital preprocess for GeneralGrad GeneralGrad::Instance().PreparedForGeneralGrad(inputs, no_grad_vars, &queue, node_input_buffers_dict); } VLOG(6) << " startup_ops' size is :" << queue.size(); /* --- Topological Visit --- */ // 1. Pop queue // 2. Run node // |- Check and capture target result // |- node(grads) // |- Prepare for next node // 3. Update queue VLOG(6) << "Run Backward"; while (!queue.empty()) { GradNodeBase* node = queue.front(); VLOG(6) << "Running GradNode:" << node->name(); paddle::platform::RecordEvent node_record_event( std::string((*node).name()) + " grad_node", paddle::platform::TracerEventType::Operator, 1); if (queue.size() > 1 && node_in_degree_map[node] != 0) { queue.pop(); continue; } queue.pop(); // Run node: This is where Hook happens PADDLE_ENFORCE( node_input_buffers_dict.count(node), paddle::platform::errors::Fatal( "Unable to find next node in the GradTensorHolder \n" "Trying to run Node without configuring its GradTensorHolder.")); std::unique_ptr node_input_buffer = std::move(node_input_buffers_dict[node]); // Set input target grad_var from node_input_buffer by inputmeta if (!inputs.empty() && is_general_grad) { GeneralGrad::Instance().SetResultForInputTargetVar(*node_input_buffer, node); } // no_grad_vars if (!no_grad_vars.empty() && is_general_grad) { auto iter = GeneralGrad::Instance().GetNoGradVarNodesInputMetaMap()->find(node); if (iter != GeneralGrad::Instance().GetNoGradVarNodesInputMetaMap()->end()) { VLOG(6) << "Change the input buffer[slot][rank] by Zeros"; auto rank_info = (iter->second)->OutRankInfo(); node_input_buffer->SetBufferSlotRankZeros(rank_info.first, rank_info.second); } } VLOG(6) << "Running GradNode:" << node->name(); // Check input EnforceGradNodeHasInput(node); VLOG(6) << "Run Backward Kernel with GradTensorHolder."; // Run Pre Backward Node and get outputs paddle::small_vector, kSlotSmallVectorSize> grad_output_tensors = (*node)(node_input_buffer->Buffers(), create_graph, is_general_grad); // retain_grad or not if (!retain_graph) { VLOG(6) << "retain_graph is false, need to clear the TensorWrapper of nodes."; node->ClearTensorWrappers(); } // TODO(jiabin): Should we erase it or find a more efficient way. node_input_buffers_dict.erase(node); // Prepare GradTensorHolder for next node const paddle::small_vector, kSlotSmallVectorSize>& metas = node->OutputMeta(); PADDLE_ENFORCE(metas.size() == grad_output_tensors.size() || metas.empty(), paddle::platform::errors::Fatal( "Number of edges should be either empty ( for leaf node " ") or the same as number of output grad tensors, but we " "got edges size is: %d, grad_output size is: %d", metas.size(), grad_output_tensors.size())); for (size_t i = 0; i < metas.size(); i++) { for (size_t j = 0; j < metas[i].size(); j++) { const Edge& edge = metas[i][j].GetEdge(); if (!edge.IsInitialized()) { continue; } auto edge_rank = edge.GetEdgeRankInfo(); // Since we make edge has as same rank as bwd outputs, we indexing them // with // the same rank(i, j) auto next_node_shared = edge.GetMutableGradNode(); // Next node could be nullptr if it is leaf tensor with no // AccumulationNode attached // Or it could also originated from dispensable inputs if (!next_node_shared || !next_node_shared.get() || grad_output_tensors[i].empty()) { continue; } PADDLE_ENFORCE_LT( j, grad_output_tensors[i].size(), paddle::platform::errors::Fatal( "Rank of grad_output_tensors should be less than " "grad_output_tensors[i].size(), which is: %d. This error may " "indicate autoprune or autograd api error. ", grad_output_tensors.size())); paddle::experimental::Tensor& grad_output_tensor = grad_output_tensors[i][j]; if ((!grad_output_tensor.defined() || !grad_output_tensor.initialized())) { VLOG(6) << "We get grad_output_tensor with slot: " << i << ", rank: " << j << " as uninitialized or undefined tensor"; } VLOG(6) << "Get Edge and grad_output_tensor with slot: " << i << ", rank: " << j << " 's name is: " << grad_output_tensor.name(); auto* next_node = next_node_shared.get(); if (!node_input_buffers_dict.count(next_node)) { const auto& input_meta = next_node->InputMeta(); auto grad_tensor_holder = std::make_unique(input_meta); VLOG(6) << "Construct GradTensorHolder for grad node: " << next_node->name(); node_input_buffers_dict[next_node] = std::move(grad_tensor_holder); } VLOG(6) << "Sum grad inputs for edge slot: " << edge_rank.first << ", rank: " << edge_rank.second; node_input_buffers_dict[next_node]->add( edge_rank.first, edge_rank.second, grad_output_tensor, create_graph); // Update queue node_in_degree_map[next_node]--; PADDLE_ENFORCE( node_in_degree_map[next_node] >= 0, paddle::platform::errors::Fatal( "Detected in-degree value smaller than zero. For Node: %s" "Node's in-degree cannot be negative.", next_node->name())); if (is_general_grad) { bool is_potential_stop_node = GeneralGrad::Instance().GetPotentialStopNodes()->count(next_node); if (node_in_degree_map[next_node] == 0 && !is_potential_stop_node) { queue.emplace(std::move(next_node)); } } else { if (node_in_degree_map[next_node] == 0) { queue.emplace(std::move(next_node)); } } } } } if (!is_general_grad) return {}; return GeneralGrad::Instance().GetResults(inputs, allow_unused, create_graph); } void Backward( const std::vector& tensors, // outputs const std::vector& grad_tensors, bool retain_graph) { VLOG(6) << "Run in Backward"; paddle::platform::RecordEvent backward_record_event( "backward", paddle::platform::TracerEventType::Operator, 1); RunBackward(tensors, grad_tensors, retain_graph); phi::autotune::AutoTuneStatus::Instance().Update(); } std::vector Grad( const std::vector& tensors, // outputs const std::vector& inputs, const std::vector& grad_tensors, bool retain_graph, bool create_graph, bool only_inputs, bool allow_unused, const std::vector& no_grad_vars) { VLOG(6) << "Run in Grad"; DuplicateCheck(inputs, true /* is_input */); DuplicateCheck(tensors, false /* is_input */); return RunBackward(tensors, grad_tensors, retain_graph, create_graph, inputs, allow_unused, no_grad_vars); } } // namespace egr