/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/collective/recv_v2_op.h" #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #include "paddle/fluid/platform/collective_helper.h" #include "paddle/fluid/platform/device/gpu/nccl_helper.h" #endif #include "paddle/fluid/distributed/collective/ProcessGroup.h" #include "paddle/phi/api/include/tensor.h" namespace paddle { namespace operators { template class RecvOpV2CUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { #if (defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)) && \ NCCL_VERSION_CODE >= 2703 int rid = ctx.Attr("ring_id"); PADDLE_ENFORCE_GE( rid, 0, platform::errors::InvalidArgument( "The ring_id (%d) for recv_v2 op must be non-negative.", rid)); int peer = ctx.Attr("peer"); PADDLE_ENFORCE_GE( peer, 0, platform::errors::InvalidArgument( "The peer (%d) for recv_v2 op must be non-negative.", peer)); gpuStream_t stream = nullptr; auto place = ctx.GetPlace(); auto map = distributed::ProcessGroupMapFromGid::getInstance(); if (map->has(rid)) { // Use ProcessGroup distributed::ProcessGroup *pg = map->get(rid); std::vector out_tensor; auto out_shape = ctx.Attr>("out_shape"); auto out = ctx.Output("Out"); auto out_dims = out->dims(); out->mutable_data(out_dims, place); out_tensor.emplace_back(*out); auto task = pg->Recv(out_tensor, peer); return; } auto comm = platform::NCCLCommContext::Instance().Get(rid, place); if (ctx.Attr("use_calc_stream")) { auto dev_ctx = platform::DeviceContextPool::Instance().Get(place); stream = static_cast(dev_ctx)->stream(); } else { stream = comm->stream(); } PADDLE_ENFORCE_LT( peer, comm->nranks(), platform::errors::InvalidArgument("The value of peer (%d) you set must " "be less than comm->nranks (%d).", peer, comm->nranks())); int data_type = ctx.Attr("dtype"); framework::proto::VarType::Type type = framework::proto::VarType::Type(data_type); ncclDataType_t dtype = platform::ToNCCLDataType(type); auto *out_var = ctx.OutputVar("Out"); if (out_var->IsType()) { auto out_array = out_var->GetMutable(); for (size_t idx = 0; idx < out_array->size(); ++idx) { VLOG(3) << "LodTensorArray: idx(" << idx << ")"; auto out = &out_array->at(idx); auto out_dims = out->dims(); out->mutable_data(out_dims, place, 0); auto numel = out->numel(); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( out->data(), numel, dtype, peer, comm->comm(), stream)); VLOG(3) << "rank " << comm->rank() << " recv " << phi::product(out_dims) << " from " << peer; } return; } auto out_shape = ctx.Attr>("out_shape"); auto out = ctx.Output("Out"); auto out_dims = out->dims(); auto numel = out->numel(); out->mutable_data(out_dims, place); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( out->data(), numel, dtype, peer, comm->comm(), stream)); VLOG(3) << "rank " << comm->rank() << " recv " << phi::product(out->dims()) << " from " << peer; #else PADDLE_THROW(platform::errors::Unavailable( "PaddlePaddle should be compiled with NCCL and " "NCCL version >= 2.7.3 is needed.")); #endif } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_CUDA_KERNEL(recv_v2, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel, ops::RecvOpV2CUDAKernel);