// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/api/paddle_analysis_config.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_pass_builder.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/gpu_info.h" namespace paddle { PassStrategy *AnalysisConfig::pass_builder() const { if (!pass_builder_.get()) { if (use_gpu_) { LOG(INFO) << "Create GPU IR passes"; pass_builder_.reset(new GpuPassStrategy); } else { LOG(INFO) << "Create CPU IR passes"; pass_builder_.reset(new CpuPassStrategy); } } else if (pass_builder_->use_gpu() ^ use_gpu()) { LOG(WARNING) << "The use_gpu flag is not compatible between Config and " "PassBuilder, the flags are " << use_gpu() << " " << pass_builder_->use_gpu(); LOG(WARNING) << "Please make them compatible, still use the existing " "PassBuilder."; } return pass_builder_.get(); } AnalysisConfig::AnalysisConfig(const std::string &model_dir) { model_dir_ = model_dir; Update(); } AnalysisConfig::AnalysisConfig(const std::string &prog_file, const std::string ¶ms_file) { prog_file_ = prog_file; params_file_ = params_file; Update(); } void AnalysisConfig::SetModel(const std::string &prog_file_path, const std::string ¶ms_file_path) { prog_file_ = prog_file_path; params_file_ = params_file_path; Update(); } void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id) { #ifdef PADDLE_WITH_CUDA use_gpu_ = true; memory_pool_init_size_mb_ = memory_pool_init_size_mb; device_id_ = device_id; #else LOG(ERROR) << "Please compile with gpu to EnableGpu()"; use_gpu_ = false; #endif Update(); } void AnalysisConfig::DisableGpu() { use_gpu_ = false; Update(); } AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) { #define CP_MEMBER(member__) member__ = other.member__; // Model related. CP_MEMBER(model_dir_); CP_MEMBER(prog_file_); CP_MEMBER(params_file_); CP_MEMBER(model_from_memory_); // the memory model reuses prog_file_ and // params_file_ fields. // Gpu releated. CP_MEMBER(use_gpu_); CP_MEMBER(device_id_); CP_MEMBER(memory_pool_init_size_mb_); CP_MEMBER(enable_memory_optim_); CP_MEMBER(static_memory_optim_); CP_MEMBER(static_memory_optim_force_update_); // TensorRT releated. CP_MEMBER(use_tensorrt_); CP_MEMBER(tensorrt_workspace_size_); CP_MEMBER(tensorrt_max_batchsize_); CP_MEMBER(tensorrt_min_subgraph_size_); CP_MEMBER(tensorrt_precision_mode_); // MKLDNN releated. CP_MEMBER(use_mkldnn_); CP_MEMBER(mkldnn_enabled_op_types_); // Ir related. CP_MEMBER(enable_ir_optim_); CP_MEMBER(use_feed_fetch_ops_); CP_MEMBER(ir_debug_); CP_MEMBER(specify_input_name_); CP_MEMBER(cpu_math_library_num_threads_); CP_MEMBER(serialized_info_cache_); if (use_gpu_) { pass_builder_.reset(new GpuPassStrategy( *static_cast(other.pass_builder()))); } else { pass_builder_.reset(new CpuPassStrategy( *static_cast(other.pass_builder()))); } #undef CP_MEMBER Update(); } void AnalysisConfig::EnableMKLDNN() { #ifdef PADDLE_WITH_MKLDNN pass_builder()->EnableMKLDNN(); use_mkldnn_ = true; #else LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN"; use_mkldnn_ = false; #endif Update(); } void AnalysisConfig::EnableTensorRtEngine( int workspace_size, int max_batch_size, int min_subgraph_size, AnalysisConfig::Precision precision_mode) { #ifdef PADDLE_WITH_CUDA if (!use_gpu()) { LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first"; return; } use_tensorrt_ = true; tensorrt_workspace_size_ = workspace_size; tensorrt_max_batchsize_ = max_batch_size; tensorrt_min_subgraph_size_ = min_subgraph_size; tensorrt_precision_mode_ = precision_mode; Update(); #else LOG(ERROR) << "To use TensorRT engine, please compile inference lib with GPU first."; #endif } // TODO(Superjomn) refactor this, buggy. void AnalysisConfig::Update() { auto info = SerializeInfoCache(); if (info == serialized_info_cache_) return; // Transfer pass_builder and copy the existing compatible passes. if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) { if (use_gpu()) { pass_builder_.reset(new GpuPassStrategy); if (use_tensorrt_) { // Append after the Affine_channel_conv_fuse pass. pass_builder()->InsertPass(3, "tensorrt_subgraph_pass"); } } else { pass_builder_.reset(new CpuPassStrategy); } } else { if (use_gpu()) { pass_builder_.reset(new GpuPassStrategy( *static_cast(pass_builder_.get()))); } else { pass_builder_.reset(new CpuPassStrategy( *static_cast(pass_builder_.get()))); } } if (use_tensorrt_) { const auto &passes = pass_builder_->AllPasses(); if (std::find(passes.begin(), passes.end(), "tensorrt_subgraph_pass") == std::end(passes)) { // Append after the Affine_channel_conv_fuse pass. pass_builder()->InsertPass(3, "tensorrt_subgraph_pass"); } } if (use_mkldnn_) { if (!enable_ir_optim_) { LOG(ERROR) << "EnableMKLDNN() only works when IR optimization is enabled."; } #ifdef PADDLE_WITH_MKLDNN pass_builder()->EnableMKLDNN(); use_mkldnn_ = true; #else LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN"; use_mkldnn_ = false; #endif } if (enable_memory_optim_) { pass_builder()->AppendAnalysisPass("memory_optimize_pass"); } if (ir_debug_) { pass_builder()->TurnOnDebug(); } } std::string AnalysisConfig::SerializeInfoCache() { std::stringstream ss; ss << model_dir_; ss << prog_file_; ss << params_file_; ss << use_gpu_; ss << device_id_; ss << memory_pool_init_size_mb_; ss << use_tensorrt_; ss << tensorrt_workspace_size_; ss << tensorrt_max_batchsize_; ss << tensorrt_min_subgraph_size_; ss << enable_memory_optim_; ss << static_memory_optim_; ss << static_memory_optim_force_update_; ss << use_mkldnn_; for (auto &item : mkldnn_enabled_op_types_) ss << item; ss << ";"; ss << model_from_memory_; ss << enable_ir_optim_; ss << use_feed_fetch_ops_; ss << ir_debug_; ss << specify_input_name_; ss << cpu_math_library_num_threads_; return ss.str(); } void AnalysisConfig::SetCpuMathLibraryNumThreads( int cpu_math_library_num_threads) { cpu_math_library_num_threads_ = cpu_math_library_num_threads; Update(); } float AnalysisConfig::fraction_of_gpu_memory_for_pool() const { #ifdef PADDLE_WITH_CUDA // Get the GPU memory details and calculate the fraction of memory for the // GPU memory pool. size_t gpu_used, gpu_available; platform::GpuMemoryUsage(&gpu_used, &gpu_available); double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.; float fraction_of_gpu_memory = static_cast(memory_pool_init_size_mb()) / total_gpu_memory; return fraction_of_gpu_memory; #else return 0.; #endif } void AnalysisConfig::EnableMemoryOptim(bool static_optim, bool force_update_static_cache) { enable_memory_optim_ = true; static_memory_optim_ = static_optim; static_memory_optim_force_update_ = force_update_static_cache; Update(); } bool AnalysisConfig::enable_memory_optim() const { return enable_memory_optim_; } void AnalysisConfig::SetModelBuffer(const char *prog_buffer, size_t prog_buffer_size, const char *param_buffer, size_t param_buffer_size) { prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size); params_file_ = std::string(param_buffer, param_buffer + param_buffer_size); model_from_memory_ = true; Update(); } NativeConfig AnalysisConfig::ToNativeConfig() const { NativeConfig config; config.model_dir = model_dir_; config.prog_file = prog_file_; config.param_file = params_file_; config.use_gpu = use_gpu_; config.device = device_id_; config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool(); config.specify_input_name = specify_input_name_; return config; } } // namespace paddle