// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/distributed/variable_response.h" #include #include "paddle/fluid/operators/distributed/sendrecvop_utils.h" DEFINE_string(rpc_server_profile_path, "./profile_ps", "the profile log file path"); namespace paddle { namespace operators { namespace distributed { bool VariableResponse::ReadRaw(::google::protobuf::io::CodedInputStream* input, const platform::DeviceContext& dev_ctx, platform::Place place, void* dest, int64_t size) { const void* data = NULL; int size_to_write = 0; int64_t length = size; int total_written = 0; if (platform::is_gpu_place(place)) { #ifdef PADDLE_WITH_CUDA auto& gpu_dev_ctx = static_cast(dev_ctx); platform::CPUPlace cpu; char* p = reinterpret_cast(dest); while (total_written < length) { if (!input->GetDirectBufferPointer(&data, &size_to_write)) { return false; } // NOTE: if raw buffer is large and have two neighbor fields of raw // buffers GetDirectBufferPointer can get all of them, use length to // truncate it. if (total_written + size_to_write > length) { size_to_write = length - total_written; } // This log is useful to see how long a internal block size is of rpc. VLOG(7) << "copy " << size_to_write << " data to CUDAPlace"; memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place), reinterpret_cast(p), cpu, data, size_to_write, gpu_dev_ctx.stream()); p += size_to_write; total_written += size_to_write; input->Skip(size_to_write); } gpu_dev_ctx.Wait(); #else PADDLE_THROW(platform::errors::PreconditionNotMet( "Unexpected branch, please compile with PADDLE_WITH_CUDA")); #endif return true; } else if (platform::is_xpu_place(place)) { #ifdef PADDLE_WITH_XPU auto& xpu_dev_ctx = static_cast(dev_ctx); platform::CPUPlace cpu; char* p = reinterpret_cast(dest); while (total_written < length) { if (!input->GetDirectBufferPointer(&data, &size_to_write)) { return false; } if (total_written + size_to_write > length) { size_to_write = length - total_written; } memory::Copy(BOOST_GET_CONST(platform::XPUPlace, place), reinterpret_cast(p), cpu, data, size_to_write); p += size_to_write; total_written += size_to_write; input->Skip(size_to_write); } xpu_dev_ctx.Wait(); #else PADDLE_ENFORCE_NOT_NULL( nullptr, platform::errors::Unimplemented( "Not supported XPU, please compile with option WITH_XPU=ON.")); #endif return true; } char* p = reinterpret_cast(dest); while (total_written < length) { if (!input->GetDirectBufferPointer(&data, &size_to_write)) { return false; } // NOTE: if raw buffer is large and have two neighbor fields of raw buffers // GetDirectBufferPointer can get all of them, use length to truncate it. if (total_written + size_to_write > length) { size_to_write = length - total_written; } // TODO(gongwb): can we avoid copy? platform::CPUPlace cpu; // This log is useful to see how long a internal block size is of rpc. VLOG(7) << "copy " << size_to_write << " data to CPUPlace"; memory::Copy(cpu, reinterpret_cast(p), cpu, data, size_to_write); p += size_to_write; total_written += size_to_write; input->Skip(size_to_write); } return true; } bool VariableResponse::CopyLodTensorData( ::google::protobuf::io::CodedInputStream* input, const platform::DeviceContext& ctx, const framework::DDim& dims, int length) { auto server_var = GetVar(); if (!server_var) { LOG(ERROR) << "recved var should not on current server: " << meta_.varname(); return false; } auto* tensor = GetVar()->GetMutable(); tensor->Resize(dims); framework::LoD lod; for (int i = 0; i < meta_.lod_level(); ++i) { framework::Vector v; for (int j = 0; j < meta_.lod(i).lod_data_size(); ++j) { v.push_back(meta_.lod(i).lod_data(j)); } lod.push_back(v); } tensor->set_lod(lod); void* tensor_data = tensor->mutable_data(ctx.GetPlace(), ToVarType(meta_.data_type())); VLOG(6) << "Tensor.memory_size = " << tensor->memory_size() << ", Buffer Size = " << length << ", dims:" << dims << ", numel:" << tensor->numel(); PADDLE_ENFORCE_GE( tensor->memory_size(), static_cast(length), platform::errors::InvalidArgument( "The memory size of tensor: %s should greater than length: %s", tensor->memory_size(), length)); return ReadRaw(input, ctx, tensor->place(), tensor_data, length); } inline framework::DDim GetDims( const ::google::protobuf::RepeatedField<::google::protobuf::int64>& dims) { std::vector vecdims; for (auto& d : dims) { vecdims.push_back(d); } return framework::make_ddim(vecdims); } bool VariableResponse::CopySelectRowsTensorData( ::google::protobuf::io::CodedInputStream* input, const platform::DeviceContext& ctx, const framework::DDim& dims, int length) { auto* slr = GetVar()->GetMutable(); slr->set_height(meta_.slr_height()); auto* tensor = slr->mutable_value(); tensor->Resize(dims); PADDLE_ENFORCE_EQ( static_cast(tensor->numel()), length / framework::SizeOfType(paddle::operators::distributed::ToVarType( meta_.data_type())), platform::errors::InvalidArgument( "length: %s should equal to memory size of tensor: %s", length, tensor->numel() * framework::SizeOfType(paddle::operators::distributed::ToVarType( meta_.data_type())))); void* tensor_data = tensor->mutable_data( ctx.GetPlace(), paddle::operators::distributed::ToVarType(meta_.data_type())); if (!ReadRaw(input, ctx, tensor->place(), tensor_data, length)) { return false; } return true; } bool VariableResponse::CopySelectRowsData( ::google::protobuf::io::CodedInputStream* input, const platform::DeviceContext& ctx, int length) { auto* slr = GetVar()->GetMutable(); slr->mutable_rows()->clear(); slr->mutable_rows()->resize(length / sizeof(int64_t)); // int64 int64_t* rows_data = slr->mutable_rows()->data(); // copy rows CPU data, GPU data will be copied lazily. platform::CPUPlace cpu; if (!ReadRaw(input, ctx, cpu, rows_data, length)) { return false; } return true; } bool VariableResponse::ProcSerializedField( int tag, ::google::protobuf::io::CodedInputStream* input, int64_t num_bytes) { PADDLE_ENFORCE( (meta_.type() == sendrecv::SELECTED_ROWS || meta_.type() == sendrecv::LOD_TENSOR || meta_.type() == sendrecv::NCCL_ID) && meta_.varname() != "", platform::errors::PreconditionNotMet("meta info should be got first!")); if (meta_.type() == sendrecv::NCCL_ID) { #ifdef PADDLE_WITH_CUDA auto* var = scope_->FindVar(meta_.varname()); if (var != nullptr) { ncclUniqueId* id = var->GetMutable(); if (!ReadRaw(input, *dev_ctx_, platform::CPUPlace(), id->internal, num_bytes)) { return false; } } return true; #else PADDLE_THROW( platform::errors::PreconditionNotMet("Please compiled with CUDA!")); return false; #endif } VLOG(7) << "ProcSerializedField:" << meta_.varname() << ", type:" << meta_.type() << std::endl; framework::DDim dims = GetDims(meta_.dims()); if (meta_.type() == sendrecv::LOD_TENSOR) { PADDLE_ENFORCE_GE( meta_.lod_size(), 0, platform::errors::PreconditionNotMet("lod info should be got first!")); if (!CopyLodTensorData(input, *dev_ctx_, dims, num_bytes)) { return false; } return true; } if (meta_.type() == sendrecv::SELECTED_ROWS) { if (!CopySelectRowsTensorData(input, *dev_ctx_, dims, num_bytes)) { return false; } return true; } PADDLE_THROW(platform::errors::InvalidArgument( "The type: %s of var: %s is not supported", meta_.type(), meta_.varname())); return false; } }; // namespace distributed }; // namespace operators }; // namespace paddle