/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "inference.h" #include #include "paddle/framework/executor.h" #include "paddle/framework/feed_fetch_method.h" #include "paddle/framework/init.h" #include "paddle/framework/scope.h" namespace paddle { void InferenceEngine::LoadInferenceModel(const std::string& dirname) { std::string model_filename = dirname + "/__model__"; LOG(INFO) << "loading model from " << model_filename; std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary); std::string program_desc_str; inputfs.seekg(0, std::ios::end); program_desc_str.resize(inputfs.tellg()); inputfs.seekg(0, std::ios::beg); LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); inputfs.read(&program_desc_str[0], program_desc_str.size()); inputfs.close(); program_ = new framework::ProgramDesc(program_desc_str); GenerateLoadProgram(dirname); framework::BlockDesc* global_block = program_->MutableBlock(0); feed_var_names_.clear(); fetch_var_names_.clear(); for (auto* op : global_block->AllOps()) { if (op->Type() == "feed") { feed_var_names_.insert(feed_var_names_.begin(), op->Output("Out")[0]); } else if (op->Type() == "fetch") { fetch_var_names_.push_back(op->Input("X")[0]); } } } bool InferenceEngine::IsParameter(const framework::VarDesc* var) { if (var->Persistable()) { // There are many unreachable variables in the program for (size_t i = 0; i < program_->Size(); ++i) { const framework::BlockDesc& block = program_->Block(i); for (auto* op : block.AllOps()) { if (op->Type() == "feed") { continue; } for (auto input_argument_name : op->InputArgumentNames()) { if (input_argument_name == var->Name()) { return true; } } } } } return false; } void InferenceEngine::GenerateLoadProgram(const std::string& dirname) { framework::BlockDesc* global_block = program_->MutableBlock(0); load_program_ = new framework::ProgramDesc(); framework::BlockDesc* load_block = load_program_->MutableBlock(0); for (auto* var : global_block->AllVars()) { if (IsParameter(var)) { VLOG(3) << "parameter's name: " << var->Name(); framework::VarDesc* new_var = load_block->Var(var->Name()); new_var->SetShape(var->Shape()); new_var->SetDataType(var->GetDataType()); new_var->SetType(var->GetType()); new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetPersistable(true); // append_op framework::OpDesc* op = load_block->AppendOp(); op->SetType("load"); op->SetOutput("Out", {new_var->Name()}); op->SetAttr("file_path", {dirname + "/" + new_var->Name()}); op->CheckAttrs(); } } } void InferenceEngine::PrependFeedOp() { if (!program_) { LOG(FATAL) << "Please initialize the program_ first."; } framework::BlockDesc* global_block = program_->MutableBlock(0); // create_var framework::VarDesc* feed_var = global_block->Var("feed"); feed_var->SetType(framework::proto::VarDesc::FEED_MINIBATCH); feed_var->SetPersistable(true); // prepend feed_op for (size_t i = 0; i < feed_var_names_.size(); ++i) { std::string var_name = feed_var_names_[i]; LOG(INFO) << "feed var's name: " << var_name; // prepend_op framework::OpDesc* op = global_block->PrependOp(); op->SetType("feed"); op->SetInput("X", {"feed"}); op->SetOutput("Out", {var_name}); op->SetAttr("col", {static_cast(i)}); op->CheckAttrs(); } } void InferenceEngine::AppendFetchOp() { if (!program_) { LOG(FATAL) << "Please initialize the program_ first."; } framework::BlockDesc* global_block = program_->MutableBlock(0); // create_var framework::VarDesc* fetch_var = global_block->Var("fetch"); fetch_var->SetType(framework::proto::VarDesc::FETCH_LIST); fetch_var->SetPersistable(true); // append fetch_op for (size_t i = 0; i < fetch_var_names_.size(); ++i) { std::string var_name = fetch_var_names_[i]; LOG(INFO) << "fetch var's name: " << var_name; // append_op framework::OpDesc* op = global_block->AppendOp(); op->SetType("fetch"); op->SetInput("X", {var_name}); op->SetOutput("Out", {"fetch"}); op->SetAttr("col", {static_cast(i)}); op->CheckAttrs(); } } void InferenceEngine::Execute(const std::vector& feeds, std::vector& fetchs) { if (!program_ || !load_program_) { LOG(FATAL) << "Please initialize the program_ and load_program_ first."; } if (feeds.size() < feed_var_names_.size()) { LOG(FATAL) << "Please feed " << feed_var_names_.size() << " input Tensors."; } auto* place = new platform::CPUPlace(); framework::InitDevices(); framework::Executor* executor = new framework::Executor(*place); framework::Scope* scope = new framework::Scope(); executor->Run(*load_program_, scope, 0, true, true); // set_feed_variable for (size_t i = 0; i < feed_var_names_.size(); ++i) { framework::SetFeedVariable(scope, feeds[i], "feed", i); } executor->Run(*program_, scope, 0, true, true); // get_fetch_variable fetchs.resize(fetch_var_names_.size()); for (size_t i = 0; i < fetch_var_names_.size(); ++i) { fetchs[i] = framework::GetFetchVariable(*scope, "fetch", i); } delete place; delete scope; delete executor; } } // namespace paddle