/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/executor.h" #include // for unique_ptr #include // for call_once #include #include "gtest/gtest.h" #include "paddle/framework/attribute.h" #include "paddle/framework/grad_op_builder.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" USE_OP(elementwise_add); USE_OP(gaussian_random); USE_OP(feed); using std::string; using namespace paddle::platform; using namespace paddle::framework; typedef paddle::framework::BlockDesc proto_block; typedef paddle::framework::OpDesc proto_op; void add_gaussian_random_op(string var_name, proto_block* block) { std::vector dim{2, 3}; // insert variable auto a = block->add_vars(); a->set_name(var_name); auto a_lt = a->mutable_lod_tensor(); a_lt->set_data_type(paddle::framework::DataType::FP32); for (int i : dim) { a_lt->add_dims(i); } // insert operation auto op = block->add_ops(); op->set_type("gaussian_random"); auto dims = op->add_attrs(); dims->set_name("dims"); dims->set_type(paddle::framework::AttrType::INTS); for (int i : dim) { dims->add_ints(i); } auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments(var_name); } void add_feed_op(string var_name, int index, proto_block* block) { std::vector dim{3}; // insert variable auto a = block->add_vars(); a->set_name(var_name); auto a_lt = a->mutable_lod_tensor(); a_lt->set_data_type(paddle::framework::DataType::FP32); for (int i : dim) { a_lt->add_dims(i); } // insert operation auto op = block->add_ops(); op->set_type("feed"); // set dims attr auto dims = op->add_attrs(); dims->set_name("dims"); dims->set_type(paddle::framework::AttrType::INTS); for (int i : dim) { dims->add_ints(i); } // set col attr auto col = op->add_attrs(); col->set_name("col"); col->set_type(paddle::framework::AttrType::INT); col->set_i(index); auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments(var_name); } std::once_flag set_variable_flag; template void set_feed_variable(const std::vector>& inputs) { typedef std::vector FeedInputs; Variable* g_feed_value = GetScope()->FindVar("feed_value"); FeedInputs& feed_inputs = *(g_feed_value->GetMutable()); auto size = inputs.size(); std::call_once(set_variable_flag, [&]() { feed_inputs.reserve(size); for (size_t i = 0; i < size; i++) { paddle::framework::Tensor tmp; tmp.mutable_data(make_ddim({static_cast(inputs[i].size())}), CPUPlace()); feed_inputs.push_back(tmp); } }); for (size_t i = 0; i < size; i++) { memcpy(feed_inputs[i].data(), inputs[i].data(), inputs[i].size() * sizeof(T)); } } class ExecutorTesterRandom : public ::testing::Test { public: virtual void SetUp() override { auto root_block = pdesc_.add_blocks(); root_block->set_idx(0); root_block->set_parent_idx(-1); add_gaussian_random_op("a", root_block); add_gaussian_random_op("b", root_block); auto c = root_block->add_vars(); c->set_name("c"); auto c_lt = c->mutable_lod_tensor(); c_lt->set_data_type(paddle::framework::DataType::FP32); auto op = root_block->add_ops(); op->set_type("elementwise_add"); auto X = op->add_inputs(); X->set_parameter("X"); X->add_arguments("a"); auto Y = op->add_inputs(); Y->set_parameter("Y"); Y->add_arguments("b"); auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments("c"); scope_ = GetScope(); } protected: ProgramDesc pdesc_; Scope* scope_; }; class ExecutorTesterFeed : public ::testing::Test { public: virtual void SetUp() override { auto root_block = pdesc_.add_blocks(); root_block->set_idx(0); root_block->set_parent_idx(-1); add_feed_op("a", 0, root_block); add_feed_op("b", 1, root_block); auto c = root_block->add_vars(); c->set_name("c"); auto c_lt = c->mutable_lod_tensor(); c_lt->set_data_type(paddle::framework::DataType::FP32); auto op = root_block->add_ops(); op->set_type("elementwise_add"); auto X = op->add_inputs(); X->set_parameter("X"); X->add_arguments("a"); auto Y = op->add_inputs(); Y->set_parameter("Y"); Y->add_arguments("b"); auto Out = op->add_outputs(); Out->set_parameter("Out"); Out->add_arguments("c"); std::vector vec1 = {1.0, 2.0, 3.0}; std::vector vec2 = {4.0, 5.0, 6.0}; inputs_.push_back(vec1); inputs_.push_back(vec2); } protected: ProgramDesc pdesc_; std::vector> inputs_; }; TEST_F(ExecutorTesterRandom, CPU) { std::vector places; CPUPlace cpu_place1, cpu_place2; places.push_back(cpu_place1); places.push_back(cpu_place2); Executor* executor = new Executor(places); executor->Run(pdesc_, scope_); delete executor; } TEST_F(ExecutorTesterFeed, CPU) { std::vector places; CPUPlace cpu_place; places.push_back(cpu_place); Executor* executor = new Executor(places); // 3 mini-batch for (int i = 0; i < 3; i++) { // need to set feed variable before Executor::Run set_feed_variable(inputs_); executor->Run(pdesc_, GetScope()); } delete executor; } #ifdef PADDLE_WITH_GPU TEST_F(ExecutorTesterRandom, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); Executor* executor = new Executor(places); executor->Run(pdesc_, scope_); delete executor; } TEST_F(ExecutorTesterFeed, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); Executor* executor = new Executor(places); // need to set feed variable before Executor::Run set_feed_variable(inputs_); executor->Run(pdesc_, scope_); delete executor; } #endif