file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") function(_inference_analysis_python_api_int8_test target model_dir data_path filename use_mkldnn) py_test(${target} SRCS ${filename} ENVS CPU_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=${use_mkldnn} ARGS --infer_model ${model_dir}/model --infer_data ${data_path} --int8_model_save_path int8_models/${target} --warmup_batch_size ${WARMUP_BATCH_SIZE} --batch_size 50) endfunction() function(inference_analysis_python_api_int8_test target model_dir data_path filename) _inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path} ${filename} False) endfunction() function(inference_analysis_python_api_int8_test_custom_warmup_batch_size target model_dir data_dir filename warmup_batch_size) set(WARMUP_BATCH_SIZE ${warmup_batch_size}) inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_dir} ${filename}) endfunction() function(inference_analysis_python_api_int8_test_mkldnn target model_dir data_path filename) _inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path} ${filename} True) endfunction() function(download_quant_data install_dir data_file check_sum) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8 ${data_file} ${check_sum}) endif() endfunction() function(download_quant_model install_dir data_file check_sum) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file} ${check_sum}) endif() endfunction() function(download_quant_fp32_model install_dir data_file check_sum) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models/fp32 ${data_file} ${check_sum}) endif() endfunction() function(download_lstm_model install_dir data_file check_sum) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/lstm ${data_file} ${check_sum}) endif() endfunction() function(inference_quant_int8_image_classification_test target quant_model_dir dataset_path) py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant_int8_image_classification_comparison.py" ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=true ARGS --quant_model ${quant_model_dir} --infer_data ${dataset_path} --batch_size 25 --batch_num 2 --acc_diff_threshold 0.1) endfunction() # set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 25 function(inference_quant2_int8_image_classification_test target quant_model_dir fp32_model_dir dataset_path) py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_image_classification_comparison.py" ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=true ARGS --quant_model ${quant_model_dir} --fp32_model ${fp32_model_dir} --infer_data ${dataset_path} --batch_size 50 --batch_num 2 --acc_diff_threshold 0.1) endfunction() # set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 20 function(inference_quant2_int8_nlp_test target quant_model_dir fp32_model_dir dataset_path labels_path ops_to_quantize) py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_nlp_comparison.py" ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=true ARGS --quant_model ${quant_model_dir} --fp32_model ${fp32_model_dir} --infer_data ${dataset_path} --labels ${labels_path} --batch_size 10 --batch_num 2 --acc_diff_threshold 0.1 --ops_to_quantize ${ops_to_quantize}) endfunction() function(inference_quant2_int8_lstm_model_test target fp32_model dataset_path) py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_lstm_model.py" ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=true ARGS --fp32_model ${fp32_model} --infer_data ${dataset_path} --num_threads 4 --mkldnn_cache_capacity 100 --warmup_iter 100 --warmup_batch_size 1 --acc_diff_threshold 0.11) endfunction() function(download_quant_data install_dir data_file check_sum) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8 ${data_file} ${check_sum}) endif() endfunction() function(download_quant_model install_dir data_file check_sum) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file} ${check_sum}) endif() endfunction() function(save_quant_ic_model_test target quant_model_dir int8_model_save_path) py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py ARGS --quant_model_path ${quant_model_dir} --int8_model_save_path ${int8_model_save_path} --debug) endfunction() function(save_quant_nlp_model_test target quant_model_dir int8_model_save_path ops_to_quantize) py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py ARGS --quant_model_path ${quant_model_dir} --int8_model_save_path ${int8_model_save_path} --ops_to_quantize ${ops_to_quantize}) endfunction() function(convert_model2dot_test target model_path save_graph_dir save_graph_name) py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/convert_model2dot.py ARGS --model_path ${model_path} --save_graph_dir ${save_graph_dir} --save_graph_name ${save_graph_name}) endfunction() if(WIN32) list(REMOVE_ITEM TEST_OPS test_light_nas) list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist) list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1) list(REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50) list(REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model) list(REMOVE_ITEM TEST_OPS test_imperative_ptq) list(REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1) list(REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2) list(REMOVE_ITEM TEST_OPS test_imperative_qat_amp) endif() if(LINUX AND WITH_MKLDNN) #### Image classification dataset: ImageNet (small) # The dataset should already be downloaded for INT8v2 unit tests set(IMAGENET_DATA_PATH "${INFERENCE_DEMO_INSTALL_DIR}/imagenet/data.bin") #### INT8 image classification python api test # Models should be already downloaded for INT8v2 unit tests set(INT8_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8v2") #### QUANT & INT8 comparison python api tests set(QUANT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/quant") ### Quant1 for image classification # Quant ResNet50 set(QUANT_RESNET50_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant") set(QUANT_RESNET50_MODEL_ARCHIVE "ResNet50_qat_model.tar.gz") download_quant_model(${QUANT_RESNET50_MODEL_DIR} ${QUANT_RESNET50_MODEL_ARCHIVE} ff89b934ab961c3a4a844193ece2e8a7) inference_quant_int8_image_classification_test(test_quant_int8_resnet50_mkldnn ${QUANT_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant ResNet101 set(QUANT_RESNET101_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet101_quant") set(QUANT_RESNET101_MODEL_ARCHIVE "ResNet101_qat_model.tar.gz") download_quant_model(${QUANT_RESNET101_MODEL_DIR} ${QUANT_RESNET101_MODEL_ARCHIVE} 95c6d01e3aeba31c13efb2ba8057d558) # inference_quant_int8_image_classification_test(test_quant_int8_resnet101_mkldnn ${QUANT_RESNET101_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant GoogleNet set(QUANT_GOOGLENET_MODEL_DIR "${QUANT_INSTALL_DIR}/GoogleNet_quant") set(QUANT_GOOGLENET_MODEL_ARCHIVE "GoogleNet_qat_model.tar.gz") download_quant_model(${QUANT_GOOGLENET_MODEL_DIR} ${QUANT_GOOGLENET_MODEL_ARCHIVE} 1d4a7383baa63e7d1c423e8db2b791d5) inference_quant_int8_image_classification_test(test_quant_int8_googlenet_mkldnn ${QUANT_GOOGLENET_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant MobileNetV1 set(QUANT_MOBILENETV1_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV1_quant") set(QUANT_MOBILENETV1_MODEL_ARCHIVE "MobileNetV1_qat_model.tar.gz") download_quant_model(${QUANT_MOBILENETV1_MODEL_DIR} ${QUANT_MOBILENETV1_MODEL_ARCHIVE} 3b774d94a9fcbb604d09bdb731fc1162) inference_quant_int8_image_classification_test(test_quant_int8_mobilenetv1_mkldnn ${QUANT_MOBILENETV1_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant MobileNetV2 set(QUANT_MOBILENETV2_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV2_quant") set(QUANT_MOBILENETV2_MODEL_ARCHIVE "MobileNetV2_qat_model.tar.gz") download_quant_model(${QUANT_MOBILENETV2_MODEL_DIR} ${QUANT_MOBILENETV2_MODEL_ARCHIVE} 758a99d9225d8b73e1a8765883f96cdd) inference_quant_int8_image_classification_test(test_quant_int8_mobilenetv2_mkldnn ${QUANT_MOBILENETV2_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant VGG16 set(QUANT_VGG16_MODEL_DIR "${QUANT_INSTALL_DIR}/VGG16_quant") set(QUANT_VGG16_MODEL_ARCHIVE "VGG16_qat_model.tar.gz") download_quant_model(${QUANT_VGG16_MODEL_DIR} ${QUANT_VGG16_MODEL_ARCHIVE} c37e63ca82a102f47be266f8068b0b55) # inference_quant_int8_image_classification_test(test_quant_int8_vgg16_mkldnn ${QUANT_VGG16_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant VGG19 set(QUANT_VGG19_MODEL_DIR "${QUANT_INSTALL_DIR}/VGG19_quant") set(QUANT_VGG19_MODEL_ARCHIVE "VGG19_qat_model.tar.gz") download_quant_model(${QUANT_VGG19_MODEL_DIR} ${QUANT_VGG19_MODEL_ARCHIVE} 62bcd4b6c3ca2af67e8251d1c96ea18f) # inference_quant_int8_image_classification_test(test_quant_int8_vgg19_mkldnn ${QUANT_VGG19_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) ### Quant2 for image classification # Quant2 ResNet50 with input/output scales in `fake_quantize_moving_average_abs_max` operators, # with weight scales in `fake_dequantize_max_abs` operators set(QUANT2_RESNET50_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant2") set(QUANT2_RESNET50_MODEL_ARCHIVE "ResNet50_qat_perf.tar.gz") download_quant_model(${QUANT2_RESNET50_MODEL_DIR} ${QUANT2_RESNET50_MODEL_ARCHIVE} e87309457e8c462a579340607f064d66) set(FP32_RESNET50_MODEL_DIR "${INT8_INSTALL_DIR}/resnet50") inference_quant2_int8_image_classification_test(test_quant2_int8_resnet50_mkldnn ${QUANT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes, # with weight scales in `fake_dequantize_max_abs` operators set(QUANT2_RESNET50_RANGE_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant2_range") set(QUANT2_RESNET50_RANGE_MODEL_ARCHIVE "ResNet50_qat_range.tar.gz") download_quant_model(${QUANT2_RESNET50_RANGE_MODEL_DIR} ${QUANT2_RESNET50_RANGE_MODEL_ARCHIVE} 2fdc8a139f041c0d270abec826b2d304) inference_quant2_int8_image_classification_test(test_quant2_int8_resnet50_range_mkldnn ${QUANT2_RESNET50_RANGE_MODEL_DIR}/ResNet50_qat_range ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes, # with weight scales in `fake_channel_wise_dequantize_max_abs` operators set(QUANT2_RESNET50_CHANNELWISE_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant2_channelwise") set(QUANT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE "ResNet50_qat_channelwise.tar.gz") download_quant_model(${QUANT2_RESNET50_CHANNELWISE_MODEL_DIR} ${QUANT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE} 887a1b1b0e9a4efd10f263a43764db26) inference_quant2_int8_image_classification_test(test_quant2_int8_resnet50_channelwise_mkldnn ${QUANT2_RESNET50_CHANNELWISE_MODEL_DIR}/ResNet50_qat_channelwise ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # Quant2 MobileNetV1 set(QUANT2_MOBILENETV1_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV1_quant2") set(QUANT2_MOBILENETV1_MODEL_ARCHIVE "MobileNet_qat_perf.tar.gz") download_quant_model(${QUANT2_MOBILENETV1_MODEL_DIR} ${QUANT2_MOBILENETV1_MODEL_ARCHIVE} 7f626e453db2d56fed6c2538621ffacf) set(FP32_MOBILENETV1_MODEL_DIR "${INT8_INSTALL_DIR}/mobilenetv1") inference_quant2_int8_image_classification_test(test_quant2_int8_mobilenetv1_mkldnn ${QUANT2_MOBILENETV1_MODEL_DIR}/MobileNet_qat_perf/float ${FP32_MOBILENETV1_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) ### Quant2 for NLP set(NLP_DATA_ARCHIVE "Ernie_dataset.tar.gz") set(NLP_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/Ernie_dataset") set(NLP_DATA_PATH "${NLP_DATA_DIR}/Ernie_dataset/1.8w.bs1") set(NLP_LABLES_PATH "${NLP_DATA_DIR}/Ernie_dataset/label.xnli.dev") download_quant_data(${NLP_DATA_DIR} ${NLP_DATA_ARCHIVE} e650ce0cbc1fadbed5cc2c01d4e734dc) # Quant2 Ernie set(QUANT2_ERNIE_MODEL_ARCHIVE "ernie_qat.tar.gz") set(QUANT2_ERNIE_MODEL_DIR "${QUANT_INSTALL_DIR}/Ernie_quant2") download_quant_model(${QUANT2_ERNIE_MODEL_DIR} ${QUANT2_ERNIE_MODEL_ARCHIVE} f7cdf4720755ecf66efbc8044e9922d9) set(FP32_ERNIE_MODEL_ARCHIVE "ernie_fp32_model.tar.gz") set(FP32_ERNIE_MODEL_DIR "${QUANT_INSTALL_DIR}/Ernie_float") download_quant_fp32_model(${FP32_ERNIE_MODEL_DIR} ${FP32_ERNIE_MODEL_ARCHIVE} 114f38804a3ef8c45e7259e68bbd838b) set(QUANT2_ERNIE_OPS_TO_QUANTIZE "fc,reshape2,transpose2,matmul,elementwise_add") inference_quant2_int8_nlp_test(test_quant2_int8_ernie_mkldnn ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${FP32_ERNIE_MODEL_DIR}/ernie_fp32_model ${NLP_DATA_PATH} ${NLP_LABLES_PATH} ${QUANT2_ERNIE_OPS_TO_QUANTIZE}) # Quant2 GRU set(QUANT2_GRU_MODEL_ARCHIVE "GRU_quant_acc.tar.gz") set(QUANT2_GRU_MODEL_DIR "${QUANT_INSTALL_DIR}/GRU_quant2") download_quant_model(${QUANT2_GRU_MODEL_DIR} ${QUANT2_GRU_MODEL_ARCHIVE} cf207f8076dcfb8b74d8b6bdddf9090c) set(QUANT2_GRU_OPS_TO_QUANTIZE "multi_gru") # Quant2 LSTM set(QUANT2_LSTM_MODEL_ARCHIVE "lstm_quant.tar.gz") set(QUANT2_LSTM_MODEL_DIR "${QUANT_INSTALL_DIR}/lstm_quant_test") download_quant_model(${QUANT2_LSTM_MODEL_DIR} ${QUANT2_LSTM_MODEL_ARCHIVE} 40a693803b12ee9e251258f32559abcb) set(QUANT2_LSTM_OPS_TO_QUANTIZE "fusion_lstm") ### Save FP32 model or INT8 model from Quant model set(QUANT2_INT8_RESNET50_SAVE_PATH "${QUANT_INSTALL_DIR}/ResNet50_quant2_int8") save_quant_ic_model_test(save_quant2_model_resnet50 ${QUANT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${QUANT2_INT8_RESNET50_SAVE_PATH}) set(QUANT2_INT8_ERNIE_SAVE_PATH "${QUANT_INSTALL_DIR}/Ernie_quant2_int8") save_quant_nlp_model_test(save_quant2_model_ernie ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${QUANT2_INT8_ERNIE_SAVE_PATH} ${QUANT2_ERNIE_OPS_TO_QUANTIZE}) set(QUANT2_INT8_GRU_SAVE_PATH "${QUANT_INSTALL_DIR}/GRU_quant2_int8") save_quant_nlp_model_test(save_quant2_model_gru ${QUANT2_GRU_MODEL_DIR}/GRU_quant_acc ${QUANT2_INT8_GRU_SAVE_PATH} ${QUANT2_GRU_OPS_TO_QUANTIZE}) set(QUANT2_INT8_LSTM_SAVE_PATH "${QUANT_INSTALL_DIR}/lstm_quant2_int8") save_quant_nlp_model_test(save_quant2_model_lstm ${QUANT2_LSTM_MODEL_DIR}/lstm_quant ${QUANT2_INT8_LSTM_SAVE_PATH} ${QUANT2_LSTM_OPS_TO_QUANTIZE}) # Convert Quant2 model to dot and pdf files set(QUANT2_INT8_ERNIE_DOT_SAVE_PATH "${QUANT_INSTALL_DIR}/Ernie_quant2_int8_dot_file") convert_model2dot_test(convert_model2dot_ernie ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${QUANT2_INT8_ERNIE_DOT_SAVE_PATH} "Ernie_quant2_int8") ### PTQ INT8 # PTQ int8 lstm model set(LSTM_DATA_ARCHIVE "unittest_model_data/quant_lstm_input_data.tar.gz") set(QUANT2_INT8_LSTM_SAVE_PATH "${QUANT_INSTALL_DIR}/lstm_quant2") download_quant_data(${QUANT2_INT8_LSTM_SAVE_PATH} ${LSTM_DATA_ARCHIVE} add84c754e9b792fea1fbd728d134ab7) set(QUANT2_FP32_LSTM_MODEL_ARCHIVE "lstm_fp32_model.tar.gz") download_lstm_model(${QUANT2_INT8_LSTM_SAVE_PATH} ${QUANT2_FP32_LSTM_MODEL_ARCHIVE} eecd9f44d69a84acc1cf2235c4b8b743) inference_quant2_int8_lstm_model_test(test_quant2_int8_lstm_mkldnn ${QUANT2_INT8_LSTM_SAVE_PATH}/lstm_fp32_model ${QUANT2_INT8_LSTM_SAVE_PATH}/quant_lstm_input_data) endif() # Since the tests for Quant & INT8 comparison support only testing on Linux # with MKL-DNN, we remove it here to not test it on other systems. list(REMOVE_ITEM TEST_OPS test_mkldnn_int8_quantization_strategy quant_int8_image_classification_comparison quant_int8_nlp_comparison) #TODO(wanghaoshuang): Fix this unitest failed on GCC8. LIST(REMOVE_ITEM TEST_OPS test_auto_pruning) LIST(REMOVE_ITEM TEST_OPS test_filter_pruning) # fix if(WIN32) SET(SINGLE_CARD_TEST_OPS test_user_defined_quantization test_quantization_scale_pass test_quantization_pass test_moving_average_abs_max_scale_op test_imperative_qat_channelwise test_imperative_qat test_imperative_out_scale test_graph) LIST(REMOVE_ITEM TEST_OPS ${SINGLE_CARD_TEST_OPS}) foreach(src ${SINGLE_CARD_TEST_OPS}) py_test(${src} SRCS ${src}.py ENVS CUDA_VISIBLE_DEVICES=0) endforeach() endif() foreach(src ${TEST_OPS}) py_test(${src} SRCS ${src}.py) endforeach() # setting timeout value for old unittests if(NOT WIN32) set_tests_properties(test_post_training_quantization_lstm_model PROPERTIES TIMEOUT 120) set_tests_properties(test_post_training_quantization_mobilenetv1 PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=NIGHTLY") set_tests_properties(test_post_training_quantization_resnet50 PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=NIGHTLY") set_tests_properties(test_post_training_quantization_mnist PROPERTIES TIMEOUT 120) set_tests_properties(test_imperative_ptq PROPERTIES TIMEOUT 120) set_tests_properties(test_weight_quantization_mobilenetv1 PROPERTIES TIMEOUT 120) endif() set_tests_properties(test_graph PROPERTIES TIMEOUT 120) set_tests_properties(test_quantization_pass PROPERTIES TIMEOUT 120) set_tests_properties(test_imperative_qat_channelwise PROPERTIES TIMEOUT 120) set_tests_properties(test_user_defined_quantization PROPERTIES TIMEOUT 120) set_tests_properties(test_imperative_qat PROPERTIES TIMEOUT 120) set_tests_properties(test_imperative_out_scale PROPERTIES TIMEOUT 120) if(LINUX AND WITH_MKLDNN) set_tests_properties(test_quant2_int8_mobilenetv1_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(convert_model2dot_ernie PROPERTIES TIMEOUT 120) set_tests_properties(test_quant2_int8_resnet50_channelwise_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(test_quant_int8_mobilenetv2_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(test_quant2_int8_resnet50_range_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(save_quant2_model_resnet50 PROPERTIES TIMEOUT 120) set_tests_properties(test_quant_int8_resnet50_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(test_quant_int8_mobilenetv1_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(test_quant2_int8_ernie_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(test_quant_int8_googlenet_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(test_quant2_int8_resnet50_mkldnn PROPERTIES TIMEOUT 120) set_tests_properties(test_quant2_int8_lstm_mkldnn PROPERTIES TIMEOUT 120) endif()