// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h" #include #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/string/pretty_log.h" namespace paddle { namespace framework { class Scope; } // namespace framework } // namespace paddle namespace paddle { namespace framework { namespace ir { class Node; MulGRUFusePass::MulGRUFusePass() { AddOpCompat(OpCompat("gru")) .AddInput("Input") .IsTensor() .End() .AddInput("H0") .IsTensor() .IsOptional() .End() .AddInput("Weight") .IsTensor() .End() .AddInput("Bias") .IsTensor() .End() .AddOutput("BatchGate") .IsTensor() .End() .AddOutput("BatchResetHiddenPrev") .IsTensor() .End() .AddOutput("BatchHidden") .IsTensor() .End() .AddOutput("Hidden") .IsTensor() .End() .AddAttr("activation") .IsStringIn({"sigmoid", "tanh", "relu", "identity"}) .End() .AddAttr("gate_activation") .IsStringIn({"sigmoid", "tanh", "relu", "identity"}) .End() .AddAttr("is_reverse") .IsType() .End() .AddAttr("origin_mode") .IsType() .IsOptional() .End(); AddOpCompat(OpCompat("mul")) .AddInput("X") .IsTensor() .End() .AddInput("Y") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("x_num_col_dims") .IsNumEQ(1) .End() .AddAttr("y_num_col_dims") .IsNumEQ(1) .End(); } FCGRUFusePass::FCGRUFusePass() { AddOpCompat(OpCompat("gru")) .AddInput("Input") .IsTensor() .End() .AddInput("H0") .IsTensor() .IsOptional() .End() .AddInput("Weight") .IsTensor() .End() .AddInput("Bias") .IsTensor() .End() .AddOutput("BatchGate") .IsTensor() .End() .AddOutput("BatchResetHiddenPrev") .IsTensor() .End() .AddOutput("BatchHidden") .IsTensor() .End() .AddOutput("Hidden") .IsTensor() .End() .AddAttr("activation") .IsStringIn({"sigmoid", "tanh", "relu", "identity"}) .End() .AddAttr("gate_activation") .IsStringIn({"sigmoid", "tanh", "relu", "identity"}) .End() .AddAttr("is_reverse") .IsType() .End() .AddAttr("origin_mode") .IsType() .IsOptional() .End(); AddOpCompat(OpCompat("mul")) .AddInput("X") .IsTensor() .End() .AddInput("Y") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("x_num_col_dims") .IsNumEQ(1) .End() .AddAttr("y_num_col_dims") .IsNumEQ(1) .End(); AddOpCompat(OpCompat("elementwise_add")) .AddInput("X") .IsTensor() .End() .AddInput("Y") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("axis") .IsNumGE(-1) .End(); } int FCGRUFusePass::BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope, bool with_fc_bias) const { GraphPatternDetector gpd; auto* pattern = gpd.mutable_pattern(); PDNode* x = pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable(); // Create pattern. patterns::FC fc_pattern(pattern, name_scope); auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false); fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse. patterns::GRU gru_pattern(pattern, name_scope); gru_pattern(fc_out); // Create New OpDesc auto gru_creator = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h, Node* bias, Node* hidden, Node* fc_bias, const bool use_mkldnn) { OpDesc op_desc; op_desc.SetType("fusion_gru"); #define NEW_NAME(x) name_scope + "/at." #x ".new" #define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()}); SET_IN(X, x); SET_IN(WeightX, weight_x); SET_IN(WeightH, weight_h); SET_IN(Bias, bias); #undef SET_IN // TODO(grygielski): Add H0 to the pass op_desc.SetInput("H0", {}); op_desc.SetOutput("Hidden", {hidden->Name()}); op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse")); op_desc.SetAttr("origin_mode", gru->Op()->GetAttrIfExists("origin_mode")); // TODO(TJ): This should be a option for infer op_desc.SetAttr("use_seq", true); op_desc.SetAttr("use_mkldnn", use_mkldnn); op_desc.SetAttr("activation", gru->Op()->GetAttr("activation")); op_desc.SetAttr("gate_activation", gru->Op()->GetAttr("gate_activation")); #define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)}) SET_IMTERMEDIATE_OUT(ReorderedH0); SET_IMTERMEDIATE_OUT(XX); SET_IMTERMEDIATE_OUT(BatchedInput); SET_IMTERMEDIATE_OUT(BatchedOut); #undef SET_IMTERMEDIATE_OUT auto* op = graph->CreateOpNode(&op_desc); if (with_fc_bias) { auto* gru_bias_var = scope->FindVar(bias->Name()); auto* fc_bias_var = scope->FindVar(fc_bias->Name()); PADDLE_ENFORCE_NE( gru_bias_var, nullptr, platform::errors::NotFound("GRU bias var has not been found.")); PADDLE_ENFORCE_NE( fc_bias_var, nullptr, platform::errors::NotFound("FC bias var has not been found.")); auto* gru_bias_tensor = gru_bias_var->GetMutable(); auto* fc_bias_tensor = fc_bias_var->GetMutable(); PADDLE_ENFORCE_EQ( gru_bias_tensor->numel(), fc_bias_tensor->numel(), platform::errors::PreconditionNotMet( "GRU and FC biases have to have equal number of elements.")); auto gru_bias_data = gru_bias_tensor->mutable_data(platform::CPUPlace()); auto* fc_bias_data = fc_bias_tensor->data(); // Recompute GRU bias for (int i = 0; i < gru_bias_tensor->numel(); ++i) { gru_bias_data[i] += fc_bias_data[i]; } } #undef GET_NODE #define NEW_IMTERMEDIATE_OUT(key) \ VarDesc key(NEW_NAME(key)); \ key.SetPersistable(false); \ auto* key##_node = graph->CreateVarNode(&key); \ IR_NODE_LINK_TO(op, key##_node); NEW_IMTERMEDIATE_OUT(ReorderedH0); NEW_IMTERMEDIATE_OUT(XX); NEW_IMTERMEDIATE_OUT(BatchedInput); NEW_IMTERMEDIATE_OUT(BatchedOut); #undef NEW_NAME #undef NEW_IMTERMEDIATE_OUT IR_NODE_LINK_TO(x, op); IR_NODE_LINK_TO(weight_x, op); IR_NODE_LINK_TO(weight_h, op); IR_NODE_LINK_TO(bias, op); IR_NODE_LINK_TO(op, hidden); // h0? return op; }; int fusion_count{0}; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { if (!IsCompat(subgraph, g)) { LOG(WARNING) << "Pass in op compat failed."; return; } auto* x_n = subgraph.at(x); GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern); // nodes need be removed GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchResetHiddenPrev, gru_pattern); GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchHidden, gru_pattern); // TODO(wilber): Support origin_mode=True. if (gru->Op()->GetAttrIfExists("origin_mode") == true) { LOG(INFO) << "fc_gru_fuse_pass not supported when origin_mode=True."; return; } const bool use_mkldnn = (mul->Op()->GetAttrIfExists("use_mkldnn") && gru->Op()->GetAttrIfExists("activation") == "tanh" && gru->Op()->GetAttrIfExists("gate_activation") == "sigmoid"); if (with_fc_bias) { GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern); gru_creator(gru, x_n, w, Weight, Bias, Hidden, fc_bias, use_mkldnn); // Remove unneeded nodes. std::unordered_set marked_nodes( {mul, gru, elementwise_add, fc_out, mul_out, BatchGate, BatchResetHiddenPrev, BatchHidden}); GraphSafeRemoveNodes(graph, marked_nodes); } else { gru_creator(gru, x_n, w, Weight, Bias, Hidden, nullptr, use_mkldnn); // Remove unneeded nodes. std::unordered_set marked_nodes( {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden}); GraphSafeRemoveNodes(graph, marked_nodes); } #undef GET_NODE ++fusion_count; }; gpd(graph, handler); return fusion_count; } void MulGRUFusePass::ApplyImpl(ir::Graph* graph) const { FusePassBase::Init(name_scope_, graph); int fusion_count = MulGRUFusePass::BuildFusion( graph, name_scope_, param_scope(), false /*with_fc_bias*/); AddStatis(fusion_count); } void FCGRUFusePass::ApplyImpl(ir::Graph* graph) const { FusePassBase::Init(name_scope_, graph); int fusion_count = FCGRUFusePass::BuildFusion( graph, name_scope_, param_scope(), true /*with_fc_bias*/); AddStatis(fusion_count); string::PrettyLogDetail("--- fused %d pairs of fc gru patterns", fusion_count); } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass); REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass); REGISTER_PASS_CAPABILITY(mul_gru_fuse_pass) .AddCombination( paddle::framework::compatible::OpVersionComparatorCombination() .EQ("mul", 0) .EQ("gru", 0) .LE("fusion_gru", 1)); REGISTER_PASS_CAPABILITY(fc_gru_fuse_pass) .AddCombination( paddle::framework::compatible::OpVersionComparatorCombination() .EQ("mul", 0) .LE("elementwise_add", 1) .EQ("gru", 0) .LE("fusion_gru", 1));