/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/device_code.h" #include #include "gtest/gtest.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/platform/init.h" constexpr auto saxpy_code = R"( extern "C" __global__ void saxpy_kernel(float a, float *x, float* y, float* z, size_t n) { for (size_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < n; tid += blockDim.x * gridDim.x) { z[tid] = a * x[tid] + y[tid]; } } )"; #ifdef PADDLE_WITH_CUDA TEST(DeviceCode, cuda) { if (!paddle::platform::dynload::HasNVRTC() || !paddle::platform::dynload::HasCUDADriver()) { return; } paddle::framework::InitDevices({0}); paddle::platform::CUDAPlace place = paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceCode code(place, "saxpy_kernel", saxpy_code); paddle::framework::Tensor cpu_x; paddle::framework::Tensor cpu_y; paddle::framework::Tensor cpu_z; float scale = 2; auto dims = paddle::framework::make_ddim( {static_cast(256), static_cast(1024)}); cpu_x.mutable_data(dims, paddle::platform::CPUPlace()); cpu_y.mutable_data(dims, paddle::platform::CPUPlace()); size_t n = cpu_x.numel(); for (size_t i = 0; i < n; ++i) { cpu_x.data()[i] = static_cast(i); } for (size_t i = 0; i < n; ++i) { cpu_y.data()[i] = static_cast(0.5); } paddle::framework::Tensor x; paddle::framework::Tensor y; paddle::framework::Tensor z; float* x_data = x.mutable_data(dims, place); float* y_data = y.mutable_data(dims, place); float* z_data = z.mutable_data(dims, place); TensorCopySync(cpu_x, place, &x); TensorCopySync(cpu_y, place, &y); EXPECT_EQ(code.Compile(), true); std::vector args = {&scale, &x_data, &y_data, &z_data, &n}; code.SetNumThreads(1024); code.SetWorkloadPerThread(1); code.Launch(n, &args); auto* dev_ctx = paddle::platform::DeviceContextPool::Instance().Get(place); dev_ctx->Wait(); TensorCopySync(z, paddle::platform::CPUPlace(), &cpu_z); for (size_t i = 0; i < n; i++) { EXPECT_EQ(cpu_z.data()[i], static_cast(i) * scale + 0.5); } } TEST(DeviceCodePool, cuda) { if (!paddle::platform::dynload::HasNVRTC() || !paddle::platform::dynload::HasCUDADriver()) { return; } paddle::framework::InitDevices({0}); paddle::platform::CUDAPlace place = paddle::platform::CUDAPlace(0); paddle::platform::DeviceCodePool& pool = paddle::platform::DeviceCodePool::Init({place}); size_t num_device_codes_before = pool.size(place); EXPECT_EQ(num_device_codes_before, 0UL); std::unique_ptr code( new paddle::platform::CUDADeviceCode(place, "saxpy_kernel", saxpy_code)); LOG(INFO) << "origin ptr: " << code.get(); pool.Set(std::move(code)); size_t num_device_codes_after = pool.size(place); EXPECT_EQ(num_device_codes_after, 1UL); paddle::platform::DeviceCode* code_get = pool.Get(place, "saxpy_kernel"); LOG(INFO) << "get ptr: " << code_get; } #endif