/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the Licnse. */ #include #include #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/mlu/mlu_baseop.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class ActivationMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 1.0f; output->mutable_data(ctx.GetPlace()); MLUCnnlActivationDesc act_desc(act_mode, alpha); MLUCnnlTensorDesc input_desc(*input); MLUCnnlTensorDesc output_desc(*output); MLUCnnl::Active(ctx, act_desc.get(), input_desc.get(), GetBasePtr(input), output_desc.get(), GetBasePtr(output)); } }; // For gelu, leaky_relu template class ActivationGradMLUKernelV1 : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 1.0f; dx->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc x_desc(*x); MLUCnnlTensorDesc dout_desc(*dout); MLUCnnlTensorDesc dx_desc(*dx); MLUCnnlActivationDesc act_desc(act_mode, alpha); MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr, dout_desc.get(), GetBasePtr(dout), x_desc.get(), GetBasePtr(x), dx_desc.get(), GetBasePtr(dx)); } }; // For tanh, sigmoid template class ActivationGradMLUKernelV2 : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 1.0f; dx->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc out_desc(*out); MLUCnnlTensorDesc dout_desc(*dout); MLUCnnlTensorDesc dx_desc(*dx); MLUCnnlActivationDesc act_desc(act_mode, alpha); MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, out_desc.get(), GetBasePtr(out), dout_desc.get(), GetBasePtr(dout), nullptr, nullptr, dx_desc.get(), GetBasePtr(dx)); } }; // For relu, relu6 template class ActivationGradMLUKernelV3 : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 1.0f; dx->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc out_desc(*out); MLUCnnlTensorDesc dout_desc(*dout); MLUCnnlTensorDesc dx_desc(*dx); MLUCnnlActivationDesc act_desc(act_mode, alpha); MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr, dout_desc.get(), GetBasePtr(dout), out_desc.get(), GetBasePtr(out), dx_desc.get(), GetBasePtr(dx)); } }; // For sqrt template class SqrtMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* out = ctx.Output("Out"); auto place = ctx.GetPlace(); out->mutable_data(place); MLUCnnlTensorDesc input_desc(*x); MLUCnnlTensorDesc output_desc(*out); cnnlComputationPreference_t prefer = CNNL_COMPUTATION_FAST; MLUCnnl::Sqrt(ctx, prefer, input_desc.get(), GetBasePtr(x), output_desc.get(), GetBasePtr(out)); } }; template class SqrtGradMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto place = ctx.GetPlace(); dx->mutable_data(place); MLUCnnlTensorDesc data_desc(*out); MLUCnnl::SqrtGrad(ctx, data_desc.get(), GetBasePtr(out), GetBasePtr(dout), GetBasePtr(dx)); } }; // CNNL_LOG_E = 0, // CNNL_LOG_2 = 1, // CNNL_LOG_10 = 2, template class LogMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); output->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc input_desc(*input); MLUCnnlTensorDesc output_desc(*output); cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION; MLUCnnl::Log(ctx, prefer, Log_base, input_desc.get(), GetBasePtr(input), output_desc.get(), GetBasePtr(output)); } }; template class ExpMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); output->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc input_desc(*input); MLUCnnlTensorDesc output_desc(*output); cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION; MLUCnnl::Exp(ctx, prefer, input_desc.get(), GetBasePtr(input), output_desc.get(), GetBasePtr(output)); } }; template class ExpGradMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); dx->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc dout_desc(*dout); MLUCnnlTensorDesc dx_desc(*dx); MLUCnnlTensorDesc out_desc(*out); MLUCnnlOpTensorDesc op_tensor_desc( CNNL_OP_TENSOR_MUL, ToCnnlDataType(), CNNL_NOT_PROPAGATE_NAN); MLUCnnl::OpTensor(ctx, op_tensor_desc.get(), dout_desc.get(), GetBasePtr(dout), out_desc.get(), GetBasePtr(out), dx_desc.get(), GetBasePtr(dx), ToCnnlDataType()); } }; template class HardSwishMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); output->mutable_data(ctx.GetPlace()); float threshold = ctx.Attr("threshold"); float scale = ctx.Attr("scale"); float offset = ctx.Attr("offset"); PADDLE_ENFORCE_EQ(threshold, 6.0f, platform::errors::External( "Not support threshold [%f] in MLU", threshold)); PADDLE_ENFORCE_EQ( scale, 6.0f, platform::errors::External("Not support scale [%f] in MLU", scale)); PADDLE_ENFORCE_EQ( offset, 3.0f, platform::errors::External("Not support offset [%f] in MLU", offset)); MLUCnnlActivationDesc act_desc(CNNL_ACTIVATION_HARDSWISH, 1.0f /*ceof useless*/); MLUCnnlTensorDesc input_desc(*input); MLUCnnlTensorDesc output_desc(*output); MLUCnnl::Active(ctx, act_desc.get(), input_desc.get(), GetBasePtr(input), output_desc.get(), GetBasePtr(output)); } }; template class HardSwishGradMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { float threshold = ctx.Attr("threshold"); float scale = ctx.Attr("scale"); float offset = ctx.Attr("offset"); PADDLE_ENFORCE_EQ(threshold, 6.0f, platform::errors::External( "Not support threshold [%f] in MLU", threshold)); PADDLE_ENFORCE_EQ( scale, 6.0f, platform::errors::External("Not support scale [%f] in MLU", scale)); PADDLE_ENFORCE_EQ( offset, 3.0f, platform::errors::External("Not support offset [%f] in MLU", offset)); auto* out = ctx.Input("X"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); dx->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc out_desc(*out); MLUCnnlTensorDesc dout_desc(*dout); MLUCnnlTensorDesc dx_desc(*dx); MLUCnnlActivationDesc act_desc(CNNL_ACTIVATION_HARDSWISH, 1.0f /*ceof useless*/); MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr, dout_desc.get(), GetBasePtr(dout), out_desc.get(), GetBasePtr(out), dx_desc.get(), GetBasePtr(dx)); } }; template class HardSigmoidMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); float slope = ctx.Attr("slope"); float offset = ctx.Attr("offset"); output->mutable_data(ctx.GetPlace()); MLUCnnlActivationDesc act_desc(CNNL_ACTIVATION_HARDSIGMOID, 1.0f /*ceof useless*/, 1.0f /*sliced_dim useless*/, slope, offset); MLUCnnlTensorDesc input_desc(*input); MLUCnnlTensorDesc output_desc(*output); MLUCnnl::Active(ctx, act_desc.get(), input_desc.get(), GetBasePtr(input), output_desc.get(), GetBasePtr(output)); } }; template class HardSigmoidGradMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* dout = ctx.Input(framework::GradVarName("Out")); auto* out = ctx.Input("Out"); auto* dx = ctx.Output(framework::GradVarName("X")); float slope = ctx.Attr("slope"); float offset = ctx.Attr("offset"); dx->mutable_data(ctx.GetPlace()); MLUCnnlActivationDesc act_desc(CNNL_ACTIVATION_HARDSIGMOID, 1.0f /*ceof useless*/, 1.0f /*sliced_dim useless*/, slope, offset); MLUCnnlTensorDesc out_desc(*out); MLUCnnlTensorDesc dout_desc(*dout); MLUCnnlTensorDesc dx_desc(*dx); MLUCnnl::ActiveGrad(ctx, act_desc.get(), nullptr, nullptr, nullptr, nullptr, dout_desc.get(), GetBasePtr(dout), out_desc.get(), GetBasePtr(out), dx_desc.get(), GetBasePtr(dx)); } }; template class FloorMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); output->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc input_desc(*input); MLUCnnlTensorDesc output_desc(*output); MLUCnnl::Floor(ctx, input_desc.get(), GetBasePtr(input), output_desc.get(), GetBasePtr(output)); } }; template class ReciprocalMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* out = ctx.Output("Out"); auto place = ctx.GetPlace(); out->mutable_data(place); MLUCnnlTensorDesc x_desc(*x); MLUCnnlTensorDesc out_desc(*out); MLUCnnl::Reciprocal( ctx, x_desc.get(), GetBasePtr(x), out_desc.get(), GetBasePtr(out)); } }; template class ReciprocalGradMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto place = ctx.GetPlace(); dx->mutable_data(place); Tensor square_out; square_out.Resize(out->dims()); square_out.mutable_data(place); MLUCnnlTensorDesc out_desc(*out); MLUCnnlTensorDesc dout_desc(*dout); MLUCnnlTensorDesc dx_desc(*dx); MLUCnnlTensorDesc square_out_desc(square_out); MLUCnnl::Square(ctx, out_desc.get(), GetBasePtr(out), square_out_desc.get(), GetBasePtr(&square_out)); cnnlOpTensorDesc_t op_tensor_op = CNNL_OP_TENSOR_MUL; cnnlDataType_t op_tensor_comp_type = CNNL_DTYPE_FLOAT; cnnlNanPropagation_t op_tensor_nan_opt = CNNL_NOT_PROPAGATE_NAN; MLUCnnlOpTensorDesc op_tensor_desc( op_tensor_op, op_tensor_comp_type, op_tensor_nan_opt); float alpha1_float = -1; float alpha2_float = 1; float beta_float = 0; MLUCnnl::OpTensor(ctx, op_tensor_desc.get(), dout_desc.get(), GetBasePtr(dout), square_out_desc.get(), GetBasePtr(&square_out), dx_desc.get(), GetBasePtr(dx), op_tensor_comp_type, alpha1_float, alpha2_float, beta_float); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; // reciprocal REGISTER_OP_MLU_KERNEL( reciprocal, ops::ReciprocalMLUKernel, ops::ReciprocalMLUKernel); REGISTER_OP_MLU_KERNEL( reciprocal_grad, ops::ReciprocalGradMLUKernel, ops::ReciprocalGradMLUKernel); // relu REGISTER_OP_MLU_KERNEL( relu, ops::ActivationMLUKernel, ops::ActivationMLUKernel); REGISTER_OP_MLU_KERNEL( relu_grad, ops::ActivationGradMLUKernelV3, ops::ActivationGradMLUKernelV3); // relu6 REGISTER_OP_MLU_KERNEL( relu6, ops::ActivationMLUKernel, ops::ActivationMLUKernel); REGISTER_OP_MLU_KERNEL( relu6_grad, ops::ActivationGradMLUKernelV3, ops::ActivationGradMLUKernelV3); // sigmoid REGISTER_OP_MLU_KERNEL(sigmoid, ops::ActivationMLUKernel, ops::ActivationMLUKernel); REGISTER_OP_MLU_KERNEL( sigmoid_grad, ops::ActivationGradMLUKernelV2, ops::ActivationGradMLUKernelV2); // tanh REGISTER_OP_MLU_KERNEL( tanh, ops::ActivationMLUKernel, ops::ActivationMLUKernel); REGISTER_OP_MLU_KERNEL( tanh_grad, ops::ActivationGradMLUKernelV2, ops::ActivationGradMLUKernelV2); // gelu REGISTER_OP_MLU_KERNEL( gelu, ops::ActivationMLUKernel, ops::ActivationMLUKernel); REGISTER_OP_MLU_KERNEL( gelu_grad, ops::ActivationGradMLUKernelV1, ops::ActivationGradMLUKernelV1); // leaky_relu REGISTER_OP_MLU_KERNEL( leaky_relu, ops::ActivationMLUKernel, ops::ActivationMLUKernel); REGISTER_OP_MLU_KERNEL( leaky_relu_grad, ops::ActivationGradMLUKernelV1, ops::ActivationGradMLUKernelV1); // sqrt REGISTER_OP_MLU_KERNEL(sqrt, ops::SqrtMLUKernel, ops::SqrtMLUKernel); REGISTER_OP_MLU_KERNEL(sqrt_grad, ops::SqrtGradMLUKernel, ops::SqrtGradMLUKernel); // log log2 log10 REGISTER_OP_MLU_KERNEL( log, ops::LogMLUKernel, ops::LogMLUKernel); REGISTER_OP_MLU_KERNEL( log2, ops::LogMLUKernel, ops::LogMLUKernel); REGISTER_OP_MLU_KERNEL( log10, ops::LogMLUKernel, ops::LogMLUKernel); REGISTER_OP_MLU_KERNEL(exp, ops::ExpMLUKernel, ops::ExpMLUKernel); REGISTER_OP_MLU_KERNEL(exp_grad, ops::ExpGradMLUKernel, ops::ExpGradMLUKernel); REGISTER_OP_MLU_KERNEL(hard_swish, ops::HardSwishMLUKernel, ops::HardSwishMLUKernel); REGISTER_OP_MLU_KERNEL(hard_swish_grad, ops::HardSwishGradMLUKernel, ops::HardSwishGradMLUKernel); REGISTER_OP_MLU_KERNEL(hard_sigmoid, ops::HardSigmoidMLUKernel, ops::HardSigmoidMLUKernel); REGISTER_OP_MLU_KERNEL( hard_sigmoid_grad, ops::HardSigmoidGradMLUKernel, ops::HardSigmoidGradMLUKernel); REGISTER_OP_MLU_KERNEL(floor, ops::FloorMLUKernel, ops::FloorMLUKernel);