# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gzip import struct import os from paddle.trainer_config_helpers.layers import LayerOutput from paddle.v2.parameters import Parameters from paddle.proto import ModelConfig_pb2 from paddle.v2.topology import Topology def merge_v2_model(net, param_file, output_file): '''Merge the model config and parameters into one file. The model configuration file describes the model structure which ends with .py. The parameters file stores the parameters of the model which ends with .tar.gz. @param net The output layer of the network for inference. @param param_file Path of the parameters (.tar.gz) which is stored by v2 api. @param output_file Path of the merged file which will be generated. Usage: from paddle.utils.merge_model import merge_v2_model # import your network configuration from example_net import net_conf net = net_conf(is_predict=True) param_file = './param_pass_00000.tar.gz' output_file = './output.paddle' merge_v2_model(net, param_file, output_file) ''' assert isinstance(net, LayerOutput), \ "The net should be the output of the network for inference" assert os.path.exists(param_file), \ "The model parameters file %s does not exists " % (param_file) model_proto = Topology(net).proto() assert isinstance(model_proto, ModelConfig_pb2.ModelConfig) with gzip.open(param_file) as f: params = Parameters.from_tar(f) if os.path.exists(output_file): os.remove(output_file) with open(output_file, 'w') as f: param_names = [param.name for param in model_proto.parameters] conf_str = model_proto.SerializeToString() f.write(struct.pack('q', len(conf_str))) f.write(conf_str) for pname in param_names: params.serialize(pname, f) print('Generate %s success!' % (output_file))