// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/for_range.h" namespace paddle { namespace platform { class DeviceContext; } // namespace platform namespace imperative { class ParallelContext; class VarBase; class VariableWrapper; } // namespace imperative } // namespace paddle namespace paddle { namespace imperative { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \ defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \ defined(PADDLE_WITH_ASCEND_CL) template struct DivNRanksFunctor { DivNRanksFunctor(int64_t nranks, T* output) : nranks_(nranks), output_(output) {} HOSTDEVICE void operator()(size_t idx) const { output_[idx] /= static_cast(nranks_); } int64_t nranks_; T* output_; }; template struct DivNRanksForAllReduce { framework::Tensor* in_; int64_t nranks_; const platform::DeviceContext& ctx_; DivNRanksForAllReduce(framework::Tensor* in, int64_t nranks, const platform::DeviceContext& ctx) : in_(in), nranks_(nranks), ctx_(ctx) {} template void apply() const { T* data = in_->mutable_data(ctx_.GetPlace()); platform::ForRange for_range(static_cast(ctx_), static_cast(in_->numel())); DivNRanksFunctor functor(nranks_, data); for_range(functor); } }; class Group { public: // Here, we use dense_contents_ & sparse_contents_ to // achieve the tensor fuse. When is_sparse_ is true, sparse_contents_ work, // conversely, dense_contents_ works. It is mutex relationship. framework::Variable dense_contents_; framework::Variable* sparse_contents_ = nullptr; bool is_sparse_ = false; // for concat kernel std::vector dense_tensors_; std::vector length_; int64_t all_length_{0}; // Global indices of participating variables in the group std::vector variable_indices_; // Number of params that haven't been ready. When it is 0, it means // the group is ready. size_t pending_ = -1; // external message of group framework::proto::VarType::Type dtype_; // context is used to select the stream for concat void ConcatTensors(const platform::DeviceContext& context); // context is used to select the stream for split void SplitTensors(const platform::DeviceContext& context); // use it in CUDA void DivNRanks(framework::Tensor* tensor, int64_t nranks, const platform::DeviceContext& context); void DivNRanks(const platform::DeviceContext& context, int64_t nranks); friend std::ostream& operator<<(std::ostream&, const Group&); }; struct VariableLocator { // record the index in groups_ size_t group_index; size_t inside_group_index; }; class Reducer { public: explicit Reducer( const std::vector>& vars, const std::vector>& group_indices, const std::vector& is_sparse_gradient, std::shared_ptr parallel_ctx, const std::vector& group_size_limits, bool find_unused_vars); virtual ~Reducer() {} void InitializeGroups(const std::vector>& group_indices); void InitializeDenseGroups(const std::vector& variable_indices_, Group* p_group); void PrepareDeps(const std::unordered_set& init_nodes); void PrepareForBackward( const std::vector>& outputs); void AddDistHook(size_t var_index); void MarkVarReady(const size_t var_index, const bool is_used_var); void MarkGroupReady(size_t group_index); void FusedAllReduceSchedule(const int run_order, Group& group, // NOLINT const int curr_group_index); void FinalizeBackward(); std::vector> RebuildGruops(); inline bool NeedRebuildGroup() { return !has_rebuilt_group_ && !find_unused_vars_each_step_; } void ProcessUnusedDenseVars(); bool HasGrad(size_t var_index); void TraverseBackwardGraph( const std::vector>& outputs); private: std::vector> vars_; std::vector> group_indices_; std::vector groups_; size_t next_group_ = 0; platform::Place place_; std::once_flag once_flag_; std::vector is_sparse_gradient_; std::shared_ptr parallel_ctx_; std::vector variable_locators_; int nrings_ = 1; int64_t nranks_ = -1; // Following variables are to help rebuild group // TODO(shenliang03): Support rebuild in the future. bool has_rebuilt_group_{true}; std::vector> rebuild_vars_; std::vector rebuild_var_indices_; const std::vector group_size_limits_; // Following variables are to help unused vars std::unordered_map node_deps_; std::unordered_map var_index_map_; std::vector unused_vars_; bool has_marked_unused_vars_{false}; bool find_unused_vars_each_step_{false}; bool find_unused_vars_once_{true}; bool groups_need_finalize_{false}; #ifdef PADDLE_WITH_XPU_BKCL // comm_pool_ is used for scheduling allreduce in multi Kunlun cards training. std::unique_ptr<::ThreadPool> comm_pool_{nullptr}; uint32_t comm_op_count_; std::mutex mutex_; std::condition_variable cv_; #endif // grad_need_hooks_ is used to mark whether gradient synchronization is // required across process. The default value is false. When backward() // is called, grad_need_hooks_ will be assigned to true during preparation // of backward and revert to false while finalizing backward. bool grad_need_hooks_{false}; // it just for checking hook, each parameter can only trigger one hook std::vector vars_marked_ready_; // Following variables are to help control flow. // local_used_vars_ uses 0/1 to indicate whether the // var is used in iteration. After the end of the // iteration, global_used_vars_ is obtained synchronously // globally. Choose whether to update the local // gradient according to the global_used_vars_. std::vector local_used_vars_; // global_used_vars_ is used in comm stream to avoid wait framework::Variable global_used_vars_; }; std::vector> AssignGroupBySize( const std::vector>& tensors, const std::vector& is_sparse_gradient, const std::vector& group_size_limits, const std::vector& tensor_indices = {}); #endif } // namespace imperative } // namespace paddle