/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/operators/math/blas.h" namespace paddle { namespace operators { namespace math { template using EigenMatrix = framework::EigenMatrix; template struct ValueClip { HOSTDEVICE T operator()(const T& x) const { const T kThreshold = static_cast(-64.); return x < kThreshold ? kThreshold : x; } }; template void SoftmaxFunctor::operator()( const DeviceContext& context, const framework::Tensor* X, framework::Tensor* Y) { auto logits = EigenMatrix::From(*X); auto softmax = EigenMatrix::From(*Y); const int kBatchDim = 0; const int kClassDim = 1; const int batch_size = logits.dimension(kBatchDim); const int num_classes = logits.dimension(kClassDim); Eigen::DSizes along_class(kClassDim); Eigen::DSizes batch_by_one(batch_size, 1); Eigen::DSizes one_by_class(1, num_classes); auto shifted_logits = (logits - logits.maximum(along_class) .eval() .reshape(batch_by_one) .broadcast(one_by_class)) .unaryExpr(ValueClip()); softmax.device(*context.eigen_device()) = shifted_logits.exp(); softmax.device(*context.eigen_device()) = (softmax * softmax.sum(along_class) .inverse() .eval() .reshape(batch_by_one) .broadcast(one_by_class)); } template using enable_if_CPU = typename std::enable_if< std::is_same::value>::type; template class SoftmaxFunctor> { void operator()(const DeviceContext& context, const framework::Tensor* X, framework::Tensor* Y) { auto in_dims = X->dims(); auto out_dims = Y->dims(); const float* in_data = X->data(); float* out_data = Y->data(); const int kBatchDim = 0; const int kClassDim = 1; // 2D data. Batch x C const int batch_size = in_dims[kBatchDim]; const int num_classes = in_dims[kClassDim]; std::vector entities(batch_size); auto blas = math::GetBlas(context); for (int n = 0; n < batch_size; ++n) { entities[n] = in_data[n * num_classes]; for (int c = 1; c < num_classes; ++c) { entities[n] = in_data[n * num_classes + c] > entities[n] ? in_data[n * num_classes + c] : entities[n]; } for (int c = 0; c < num_classes; ++c) { out_data[n * num_classes + c] = in_data[n * num_classes + c] - entities[n]; } } blas.VEXP(num_classes * batch_size, out_data, out_data); for (int n = 0; n < batch_size; ++n) { entities[n] = out_data[n * num_classes]; for (int c = 1; c < num_classes; ++c) { entities[n] += out_data[n * num_classes + c]; } blas.SCAL(num_classes, 1.0f / entities[n], &out_data[n * num_classes]); } } }; template void SoftmaxGradFunctor::operator()( const DeviceContext& context, const framework::Tensor* y, const framework::Tensor* y_grad, framework::Tensor* x_grad) { auto softmax = EigenMatrix::From(*y); auto softmax_grad = EigenMatrix::From(*y_grad); auto logits_grad = EigenMatrix::From(*x_grad); const int kBatchDim = 0; const int kClassDim = 1; const int batch_size = softmax.dimension(kBatchDim); const int num_classes = softmax.dimension(kClassDim); Eigen::DSizes along_class(kClassDim); Eigen::DSizes batch_by_one(batch_size, 1); Eigen::DSizes one_by_class(1, num_classes); auto dot = (softmax * softmax_grad) .sum(along_class) .eval() .reshape(batch_by_one) .broadcast(one_by_class); logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax; } } // namespace math } // namespace operators } // namespace paddle