from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) data_1 = data_layer(name='data_a', size=100) data_2 = data_layer(name='data_b', size=100) mixed_param = ParamAttr(name='mixed_param') with mixed_layer(size=400, bias_attr=False) as m1: m1 += full_matrix_projection(input=data_1, param_attr=mixed_param) with mixed_layer(size=400, bias_attr=False) as m2: m2 += full_matrix_projection(input=data_2, param_attr=mixed_param) lstm_param = ParamAttr(name='lstm_param') lstm_bias = ParamAttr(name='lstm_bias', initial_mean=0., initial_std=0.) lstm1 = lstmemory_group( input=m1, param_attr=lstm_param, lstm_bias_attr=lstm_bias, input_proj_bias_attr=False) lstm2 = lstmemory_group( input=m2, param_attr=lstm_param, lstm_bias_attr=lstm_bias, input_proj_bias_attr=False) softmax_param = ParamAttr(name='softmax_param') predict = fc_layer( input=[last_seq(input=lstm1), last_seq(input=lstm2)], size=10, param_attr=[softmax_param, softmax_param], bias_attr=False, act=SoftmaxActivation()) outputs( classification_cost( input=predict, label=data_layer( name='label', size=10)))