# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import math from op_test import OpTest from test_gru_op import gru from test_fusion_lstm_op import fc, ACTIVATION def fusion_gru( x, # T x M lod, # 1 x N h0, # N x D wx, # M x 3D wh, # D x 3D bias, # 1 x 3D is_reverse, origin_mode, act_state, act_gate): return gru(fc(x, wx, bias), lod, h0, wh, np.zeros( (1, wh.shape[1]), dtype='float32'), is_reverse, act_state, act_gate, origin_mode=origin_mode) class TestFusionGRUOp(OpTest): def set_confs(self): pass def setUp(self): self.op_type = "fusion_gru" self.lod = [[2, 4, 3]] self.M = 3 self.D = 5 self.is_reverse = False self.with_h0 = True self.with_bias = True self.act_state = 'tanh' self.act_gate = 'sigmoid' self.origin_mode = False self.use_mkldnn = False self.set_confs() T = sum(self.lod[0]) N = len(self.lod[0]) x = np.random.rand(T, self.M).astype('float32') wx = np.random.rand(self.M, 3 * self.D).astype('float32') wh = np.random.rand(self.D, 3 * self.D).astype('float32') bias = np.random.rand( 1, 3 * self.D).astype('float32') if self.with_bias else np.zeros( (1, 3 * self.D), dtype='float32') h0 = np.random.rand( N, self.D).astype('float32') if self.with_h0 else np.zeros( (N, self.D), dtype='float32') _, _, _, hidden = fusion_gru( x, self.lod, h0, wx, wh, bias, self.is_reverse, self.origin_mode, ACTIVATION[self.act_state], ACTIVATION[self.act_gate]) self.inputs = {'X': (x, self.lod), 'WeightX': wx, 'WeightH': wh} if self.with_bias: self.inputs['Bias'] = bias if self.with_h0: self.inputs['H0'] = h0 self.outputs = {'Hidden': (hidden, self.lod)} self.attrs = { 'activation': self.act_state, 'gate_activation': self.act_gate, 'is_reverse': self.is_reverse, 'origin_mode': self.origin_mode, 'use_mkldnn': self.use_mkldnn } def test_check_output(self): for use_seq in {True, False}: self.attrs['use_seq'] = use_seq self.check_output(check_dygraph=False) class TestFusionGRUOpNoInitial(TestFusionGRUOp): def set_confs(self): self.with_h0 = False class TestFusionGRUOpNoBias(TestFusionGRUOp): def set_confs(self): self.with_bias = False class TestFusionGRUOpReverse(TestFusionGRUOp): def set_confs(self): self.is_reverse = True class TestFusionGRUOpMD1(TestFusionGRUOp): def set_confs(self): self.M = 36 self.D = 8 class TestFusionGRUOpMD2(TestFusionGRUOp): def set_confs(self): self.M = 8 self.D = 8 class TestFusionGRUOpMD3(TestFusionGRUOp): def set_confs(self): self.M = 17 self.D = 15 class TestFusionGRUOpBS1(TestFusionGRUOp): def set_confs(self): self.lod = [[3]] self.D = 16 if __name__ == "__main__": unittest.main()