// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/mode.h" #include "paddle/phi/kernels/mode_kernel.h" namespace phi { template void ModeKernel(const Context& dev_ctx, const DenseTensor& x, int axis, bool keepdim, DenseTensor* out, DenseTensor* indices) { // get the input dims const auto& in_dims = x.dims(); // calcluate the real axis if (axis < 0) axis += in_dims.size(); auto out_dims = out->dims(); const T* input_data = x.data(); T* output_data = dev_ctx.template Alloc(out); int64_t* indices_data = dev_ctx.template Alloc(indices); if (axis == in_dims.size() - 1) { const int64_t& input_height = phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1)); const int64_t& input_width = in_dims[in_dims.size() - 1]; funcs::GetModebySort( dev_ctx, &x, input_width, input_height, output_data, indices_data); } else { std::vector trans_axis; for (int i = 0; i < axis; i++) { trans_axis.emplace_back(i); } trans_axis.emplace_back(in_dims.size() - 1); for (int i = axis + 1; i < in_dims.size() - 1; i++) { trans_axis.emplace_back(i); } trans_axis.emplace_back(axis); if (!keepdim) { std::vector tmp_out_shape; for (int i = 0; i < axis; i++) { tmp_out_shape.emplace_back(in_dims[i]); } tmp_out_shape.emplace_back(1); for (int i = axis + 1; i < in_dims.size(); i++) { tmp_out_shape.emplace_back(in_dims[i]); } DDim tmp_out_dim = phi::make_ddim(tmp_out_shape); out->Resize(tmp_out_dim); indices->Resize(tmp_out_dim); } DDim trans_shape(in_dims); DDim trans_out_shape(in_dims); for (int i = 0; i < trans_axis.size(); i++) { trans_shape[i] = in_dims[trans_axis[i]]; trans_out_shape[i] = in_dims[trans_axis[i]]; } trans_out_shape[in_dims.size() - 1] = 1; // second step, tranpose the input DenseTensor trans_input; trans_input.Resize(trans_shape); dev_ctx.template Alloc(&trans_input); int ndims = trans_axis.size(); funcs::TransCompute( ndims, dev_ctx, x, &trans_input, trans_axis); DenseTensor trans_ind; trans_ind.Resize(trans_out_shape); int64_t* trans_ind_data = dev_ctx.template Alloc(&trans_ind); DenseTensor trans_out; trans_out.Resize(trans_out_shape); T* trans_out_data = dev_ctx.template Alloc(&trans_out); const int64_t input_height = phi::product(phi::slice_ddim(trans_shape, 0, trans_shape.size() - 1)); const int64_t input_width = trans_shape[trans_shape.size() - 1]; funcs::GetModebySort(dev_ctx, &trans_input, input_width, input_height, trans_out_data, trans_ind_data); // last step, tranpose back the indices and output funcs::TransCompute( ndims, dev_ctx, trans_ind, indices, trans_axis); funcs::TransCompute(ndims, dev_ctx, trans_out, out, trans_axis); if (!keepdim) { out->Resize(out_dims); indices->Resize(out_dims); } } } } // namespace phi PD_REGISTER_KERNEL( mode, GPU, ALL_LAYOUT, phi::ModeKernel, float, double, int32_t, int64_t) {}