/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/full_kernel.h" #include "paddle/phi/kernels/funcs/elementwise_base.h" namespace phi { template struct FullFuctor { OutT value; template explicit inline FullFuctor(VType val) { value = static_cast(val); } __device__ __forceinline__ OutT operator()() const { return static_cast(value); } }; template void FullKernel(const Context& dev_ctx, const IntArray& shape, const Scalar& val, DataType dtype, DenseTensor* out) { out->Resize(phi::make_ddim(shape.GetData())); int numel = out->numel(); dev_ctx.template Alloc(out); if (numel > 0) { // in transformer model the numel of outpout will be zero. std::vector inputs = {}; std::vector outputs = {out}; // This function has no input, so the inputs.size() == 0. Use kUnary, but // the data will not be loaded in the kernel because the number of // parameters in the operator is 0 phi::funcs::ElementwiseKernel( dev_ctx, inputs, &outputs, FullFuctor(val.to())); } } template void FullLikeKernel(const Context& dev_ctx, const DenseTensor& x, const Scalar& val, DataType dtype, DenseTensor* out) { auto value = val.to(); using CommonType = typename std::common_type< float, typename std::conditional< std::is_same::value || std::is_same::value, float, T>::type>::type; auto common_type_value = static_cast(value); // Check whether the filled value is valid bool is_out_range = true; if (std::isinf(value) || std::isnan(value)) { is_out_range = false; } if ((common_type_value >= static_cast(std::numeric_limits::lowest())) && (common_type_value <= static_cast(std::numeric_limits::max()))) { is_out_range = false; } PADDLE_ENFORCE_EQ( is_out_range, false, phi::errors::InvalidArgument( "The filled value is out of range for target type, " "current kernel type is %s, the range should between %f " "and %f, but now value is %f.", typeid(T).name(), static_cast(std::numeric_limits::lowest()), static_cast(std::numeric_limits::max()), static_cast(value))); std::vector inputs = {}; std::vector outputs = {out}; dev_ctx.template Alloc(out); // This function has no input, so the inputs.size() == 0. Use kUnary, but the // data will not be loaded in the kernel because the number of parameters in // the operator is 0 int numel = out->numel(); if (numel > 0) { phi::funcs::ElementwiseKernel( dev_ctx, inputs, &outputs, FullFuctor(value)); } } } // namespace phi PD_REGISTER_KERNEL(full, GPU, ALL_LAYOUT, phi::FullKernel, float, double, uint8_t, int16_t, int, int64_t, bool, phi::dtype::float16, phi::dtype::bfloat16, phi::dtype::complex, phi::dtype::complex) {} PD_REGISTER_KERNEL(full_like, GPU, ALL_LAYOUT, phi::FullLikeKernel, float, double, uint8_t, int16_t, int, int64_t, bool, phi::dtype::bfloat16, phi::dtype::float16) { kernel->InputAt(0).SetBackend(phi::Backend::ALL_BACKEND); }