# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import paddle.nn as nn import paddle.static as static import paddle.nn.functional as F import paddle.utils as utils import paddle.distributed.auto_parallel as auto from paddle.distributed.auto_parallel.context import DistributedContext from paddle.distributed import fleet from paddle.distributed.auto_parallel.partitioner import Partitioner from paddle.distributed.auto_parallel.completion import complete_backward_annotation from paddle.distributed.auto_parallel.reshard import reshard paddle.enable_static() _global_parallel_strategy = None _global_process_mesh = None ROOT_MESH = auto.ProcessMesh([0, 1]) PP_MESH_0 = None PP_MESH_1 = None class MLPLayer(nn.Layer): def __init__(self, hidden_size=1024, intermediate_size=4 * 1024, initializer_range=0.02): super(MLPLayer, self).__init__() d_model = hidden_size dim_feedforward = intermediate_size weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal( mean=0.0, std=initializer_range)) bias_attr = None self.linear0 = nn.Linear( d_model, dim_feedforward, weight_attr, bias_attr=bias_attr) self.linear1 = nn.Linear( dim_feedforward, d_model, weight_attr, bias_attr=bias_attr) self.norm = nn.LayerNorm(d_model, epsilon=1e-5) def forward(self, input): if _global_parallel_strategy == "pp": auto.shard_tensor( self.linear0.weight, PP_MESH_0, dim_mapping=[-1, -1]) auto.shard_tensor( self.linear1.weight, PP_MESH_1, dim_mapping=[-1, -1]) else: auto.shard_tensor( self.linear0.weight, _global_process_mesh, dim_mapping=[-1, -1]) auto.shard_tensor( self.linear1.weight, _global_process_mesh, dim_mapping=[-1, -1]) out = self.norm(input) out = self.linear0(out) out = F.gelu(out, approximate=True) out = self.linear1(out) return out def mlp_forward(train_program, start_program): with static.program_guard(train_program, start_program), utils.unique_name.guard(): batch_size = 4 hidden_size = 1024 sequence_len = 512 input = static.data( name="input", shape=[batch_size, hidden_size], dtype='float32') label = static.data( name="label", shape=[batch_size, 1], dtype='float32') if _global_parallel_strategy == "pp": auto.shard_tensor(input, PP_MESH_0, dim_mapping=[-1, -1]) auto.shard_tensor(label, PP_MESH_1, dim_mapping=[-1, -1]) elif _global_parallel_strategy == "dp": auto.shard_tensor(input, _global_process_mesh, dim_mapping=[0, -1]) else: auto.shard_tensor(input, _global_process_mesh, dim_mapping=[-1, -1]) mlp = MLPLayer( hidden_size=hidden_size, intermediate_size=4 * hidden_size, initializer_range=0.02) predict = mlp(input) error_cost = paddle.nn.functional.square_error_cost(predict, label) loss = paddle.mean(error_cost) return loss, train_program, start_program def get_dist_prog(train_program, startup_program, dist_context, rank_id): global _global_process_mesh dist_context.set_process_mesh(_global_process_mesh) loss, train_program, startup_program = mlp_forward(train_program, startup_program) # auto completion complete_train_program = auto.complete_annotation(train_program, dist_context) dist_strategy = fleet.DistributedStrategy() partitioner = Partitioner(dist_strategy, dist_context, rank_id) # logical partition auto_parallel_main_prog, auto_parallel_startup_prog = partitioner.transpile_forward( complete_train_program, startup_program) dist_params_grads = partitioner.apply_backward( loss, complete_train_program, startup_program, auto_parallel_main_prog, auto_parallel_startup_prog) optimizer = paddle.fluid.optimizer.AdamOptimizer() opt_ops = partitioner.apply_optimize(optimizer, dist_params_grads, auto_parallel_main_prog, auto_parallel_startup_prog) return auto_parallel_main_prog, auto_parallel_startup_prog def check_backward_dist_attr(dist_context, dist_main_prog, op_need_check): has_dist_attr = True vars = dist_main_prog.global_block().vars op_dist_attr = dist_context.get_op_distributed_attr_for_program( op_need_check) if not op_dist_attr or not op_dist_attr.get_process_mesh(): has_dist_attr = False for var_name in op_need_check.input_arg_names: if not op_dist_attr.get_input_dims_mapping(var_name) or \ not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_dims_mapping() or \ not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_process_mesh(): has_dist_attr = False break if has_dist_attr: for var_name in op_need_check.output_arg_names: if not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_dims_mapping() or \ not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_process_mesh(): has_dist_attr = False break return has_dist_attr def check_send_recv_result(dist_main_prog, rank_id): send_result = False recv_result = False ops = dist_main_prog.global_block().ops if rank_id == 0: for idx, op in enumerate(ops): if op.type == "send_v2" and "gelu_0.tmp_0" in op.input_arg_names: send_result = True if op.type == "recv_v2" and "gelu_0.tmp_0@GRAD" in op.output_arg_names[ 0]: recv_result = True else: for idx, op in enumerate(ops): if op.type == "send_v2" and "gelu_0.tmp_0@GRAD" in op.input_arg_names: send_result = True if op.type == "recv_v2" and "gelu_0.tmp_0" in op.output_arg_names[ 0]: recv_result = True return send_result and recv_result def check_initialization(dist_startup_prog, rank_id): if rank_id == 0: need_check_params = [ "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0", "linear_0.b_0" ] else: need_check_params = ['linear_1.w_0', 'linear_1.b_0'] params = [] for var_name, var in dist_startup_prog.global_block().vars.items(): if var.is_parameter: params.append(var_name) return params == need_check_params def check_initialization_for_dp(dist_startup_prog): need_check_params = [ "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0", "linear_0.b_0" ] + ['linear_1.w_0', 'linear_1.b_0'] params = [] for var_name, var in dist_startup_prog.global_block().vars.items(): if var.is_parameter: params.append(var_name) broadcast_varnames = [] for op in dist_startup_prog.global_block().ops: if op.type == "c_broadcast": broadcast_varnames.append(op.output_arg_names[0]) return params == need_check_params == broadcast_varnames class TestMLPReshard(unittest.TestCase): def test_complete_backward_annotation(self): global _global_process_mesh _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH) train_program = paddle.static.Program() startup_program = paddle.static.Program() dist_context = DistributedContext() rank_id = 0 dist_main_prog, dist_startup_prog = get_dist_prog( train_program, startup_program, dist_context, 0) complete_backward_annotation(dist_main_prog, dist_context) op_need_check = None for op in dist_main_prog.global_block().ops: if op.type == "gelu_grad": op_need_check = op break # grad op should have dist attr self.assertTrue( check_backward_dist_attr(dist_context, dist_main_prog, op_need_check)) def test_mlp_pp(self): global _global_parallel_strategy _global_parallel_strategy = "pp" global _global_process_mesh _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH) global PP_MESH_0 PP_MESH_0 = auto.ProcessMesh(mesh=[0], parent=ROOT_MESH) global PP_MESH_1 PP_MESH_1 = auto.ProcessMesh(mesh=[1], parent=ROOT_MESH) train_program = paddle.static.Program() startup_program = paddle.static.Program() dist_context = DistributedContext() rank_id = 1 dist_main_prog, dist_startup_prog = get_dist_prog( train_program, startup_program, dist_context, rank_id) complete_backward_annotation(dist_main_prog, dist_context) reshard(dist_main_prog, dist_startup_prog, rank_id, dist_context) # check send and recv result self.assertTrue(check_send_recv_result(dist_main_prog, rank_id)) # parameter initialization of every rank should be different in the pipeline scene self.assertTrue(check_initialization(dist_startup_prog, rank_id)) def test_mlp_dp(self): global _global_parallel_strategy _global_parallel_strategy = "dp" global _global_process_mesh _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH) train_program = paddle.static.Program() startup_program = paddle.static.Program() dist_context = DistributedContext() rank_id = 0 dist_main_prog, dist_startup_prog = get_dist_prog( train_program, startup_program, dist_context, rank_id) complete_backward_annotation(dist_main_prog, dist_context) reshard(dist_main_prog, dist_startup_prog, rank_id, dist_context) # send and recv should not exist in dp scene. self.assertFalse(check_send_recv_result(dist_main_prog, rank_id)) # all parameters should be initialized in dp scene self.assertTrue(check_initialization_for_dp(dist_startup_prog)) if __name__ == "__main__": unittest.main()