/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/gru_op.h" namespace paddle { namespace operators { template class GRUKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { auto* input = context.Input("Input"); auto* h0 = context.Input("H0"); auto* weight = context.Input("Weight"); const T* weight_data = weight->data(); auto* bias = context.Input("Bias"); auto* batch_gate = context.Output("BatchGate"); batch_gate->mutable_data(context.GetPlace()); auto* batch_reset_hidden_prev = context.Output("BatchResetHiddenPrev"); batch_reset_hidden_prev->mutable_data(context.GetPlace()); auto* batch_hidden = context.Output("BatchHidden"); batch_hidden->mutable_data(context.GetPlace()); auto* hidden = context.Output("Hidden"); hidden->mutable_data(context.GetPlace()); auto hidden_dims = hidden->dims(); bool is_reverse = context.Attr("is_reverse"); math::LoDTensor2BatchFunctor to_batch; auto& dev_ctx = context.template device_context(); to_batch(dev_ctx, *input, batch_gate, true, is_reverse); if (bias) { math::RowwiseAdd add_bias; add_bias(dev_ctx, *batch_gate, *bias, batch_gate); } int frame_size = hidden_dims[1]; math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); Tensor ordered_h0; framework::Vector order(batch_gate->lod()[2]); if (h0) { // Since the batch computing for GRU reorders the input sequences // according to their length. The initialized cell state also needs // to reorder. ReorderInitState( context.template device_context(), *h0, order, &ordered_h0, true); gru_value.prev_out_value = ordered_h0.data(); } else { gru_value.prev_out_value = nullptr; } auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; auto active_node = math::detail::GetActivationType( context.Attr("activation")); auto active_gate = math::detail::GetActivationType( context.Attr("gate_activation")); for (size_t n = 0; n < num_batch; n++) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); int cur_batch_size = bend - bstart; Tensor gate_t = batch_gate->Slice(bstart, bend); Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend); Tensor hidden_t = batch_hidden->Slice(bstart, bend); gru_value.output_value = hidden_t.data(); gru_value.gate_value = gate_t.data(); gru_value.reset_output_value = reset_hidden_prev_t.data(); math::GRUUnitFunctor::compute( dev_ctx, gru_value, frame_size, cur_batch_size, active_node, active_gate); gru_value.prev_out_value = gru_value.output_value; } math::Batch2LoDTensorFunctor to_seq; batch_hidden->set_lod(batch_gate->lod()); to_seq(dev_ctx, *batch_hidden, hidden); } void Compute(const framework::ExecutionContext& context) const override { BatchCompute(context); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( gru, ops::GRUKernel, ops::GRUKernel); REGISTER_OP_CUDA_KERNEL( gru_grad, ops::GRUGradKernel, ops::GRUGradKernel);