# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import paddle.fluid.contrib.mixed_precision as mixed_precision from .meta_optimizer_base import MetaOptimizerBase __all__ = [] class AMPOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(AMPOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.wrapped_opt = None # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = [ "LarsOptimizer", "LambOptimizer", "RecomputeOptimizer", "GraphExecutionOptimizer", ] self.meta_optimizers_black_list = ["DGCOptimizer"] def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(AMPOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) def _init_wrapped_opt(self): if self.wrapped_opt is not None: return config = self.user_defined_strategy.amp_configs custom_white_list = set(config['custom_white_list']) custom_black_list = set(config['custom_black_list']) custom_black_varnames = set(config['custom_black_varnames']) amp_lists = mixed_precision.AutoMixedPrecisionLists( custom_white_list, custom_black_list, custom_black_varnames) self.wrapped_opt = mixed_precision.decorate( self.inner_opt, amp_lists, config['init_loss_scaling'], config['incr_every_n_steps'], config['decr_every_n_nan_or_inf'], config['incr_ratio'], config['decr_ratio'], config['use_dynamic_loss_scaling'], config['use_pure_fp16'], config['use_fp16_guard']) # if worker_num > 1, all cards will communication with each other, # add is_distributed to optimize amp, overlap communication and # computation by split the check_finite_and_unscale op. is_distributed = self.role_maker._worker_num() > 1 if self.user_defined_strategy.sharding: # FIXME(wangxi). sharding failed when split check_finite_and_unscale # FIXME(JZ-LIANG). To support Sharding-Megatron-AMP, Megatron should follow Sharding's behavior that to disable is_distributed. is_distributed = False self.wrapped_opt._set_distributed(is_distributed) def _can_apply(self): if not self.role_maker._is_collective: return False if self.user_defined_strategy.amp: return True return False def _disable_strategy(self, dist_strategy): dist_strategy.amp = False dist_strategy.amp_configs = {} def _enable_strategy(self, dist_strategy, context): dist_strategy.amp = True dist_strategy.amp_configs = { "init_loss_scaling": 32768.0, "incr_every_n_steps": 1000, "decr_every_n_nan_or_inf": 2, "incr_ratio": 2.0, "decr_ratio": 0.8, "use_dynamic_loss_scaling": True } def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): # maybe inner_opt of other meta optimizer self._init_wrapped_opt() return self.wrapped_opt.backward(loss, startup_program, parameter_list, no_grad_set, callbacks) def apply_gradients(self, params_grads): return self.wrapped_opt.apply_gradients(params_grads=params_grads) def apply_optimize(self, loss, startup_program, params_grads): return self.wrapped_opt.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads) def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): self._init_wrapped_opt() optimize_ops, params_grads = \ self.wrapped_opt.minimize(loss, startup_program, parameter_list, no_grad_set) return optimize_ops, params_grads def amp_init(self, place, scope=None, test_program=None, use_fp16_test=False): return self.wrapped_opt.amp_init(place, scope, test_program, use_fp16_test) def get_loss_scaling(self): return self.wrapped_opt.get_loss_scaling()