// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/kernels/cpu/manipulation.h" #include "paddle/pten/api/ext/dispatch.h" #include "paddle/pten/infermeta/unary.h" #include "paddle/pten/kernels/cpu/utils.h" #include "paddle/pten/kernels/functions/general/manipulation.h" #include "paddle/pten/kernels/functions/math/cast_func.h" namespace pten { template void Flatten(const CPUContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out) { auto out_dims = out->dims(); pten::Copy(dev_ctx, x, false, out); out->Resize(out_dims); } // TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate // Output Tensor, // is there a more flexible way to deal with this case? template void FlattenWithXShape(const CPUContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out, DenseTensor* xshape) { Flatten(dev_ctx, x, start_axis, stop_axis, out); general::SetXShape(x, xshape); } void ReshapeFromVectorVal(const CPUContext& dev_ctx, const DenseTensor& x, const std::vector& shape, DenseTensor* out) { auto out_meta = InferMetaFromVecValue(x.meta(), shape); if (x.data() == out->data() && x.numel() == out->numel()) { out->Resize(out_meta.dims); return; } pten::Copy(dev_ctx, x, false, out); out->Resize(out_meta.dims); } void ReshapeFromVectorValWithXShape(const CPUContext& dev_ctx, const DenseTensor& x, const std::vector& shape, DenseTensor* xshape, DenseTensor* out) { general::SetXShape(x, xshape); ReshapeFromVectorVal(dev_ctx, x, shape, out); } void ReshapeFromDT(const CPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& shape, DenseTensor* out) { auto* shape_data = shape.data(); auto vector_shape = std::vector(shape_data, shape_data + shape.numel()); ReshapeFromVectorVal(dev_ctx, x, vector_shape, out); out->ResetLoD(x.lod()); } void ReshapeFromDTWithXShape(const CPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& shape, DenseTensor* xshape, DenseTensor* out) { general::SetXShape(x, xshape); ReshapeFromDT(dev_ctx, x, shape, out); } void ReshapeFromVectorDT(const CPUContext& dev_ctx, const DenseTensor& x, const std::vector& shape, DenseTensor* out) { std::vector vector_shape; for (auto& tensor : shape) { PADDLE_ENFORCE_EQ( tensor.dims(), paddle::framework::make_ddim({1}), paddle::platform::errors::InvalidArgument( "If the element type of 'shape' in ReshapeOp is Tensor, " "the element's shape must be [1]. But received the element's shape " "is [%s]", tensor.dims())); vector_shape.push_back(*tensor.data()); } ReshapeFromVectorVal(dev_ctx, x, vector_shape, out); } void ReshapeFromVectorDTWithXShape(const CPUContext& dev_ctx, const DenseTensor& x, const std::vector& shape, DenseTensor* xshape, DenseTensor* out) { general::SetXShape(x, xshape); ReshapeFromVectorDT(dev_ctx, x, shape, out); } template void Cast(const CPUContext& dev_ctx, const DenseTensor& x, DataType out_dtype, DataType in_dtype, DenseTensor* out) { PD_VISIT_ALL_TYPES(out_dtype, "CastKernelImpl", ([&] { math::CastKernelImpl( dev_ctx, x, out); })); } } // namespace pten // TODO(chenweihang): replace by better impl PT_REGISTER_MODULE(ManipulationCPU); // TODO(yuanrisheng): "flatten_contiguous_range" is compatible with old kernel // architecture, kernel_name should be "flatten". PT_REGISTER_KERNEL("flatten_contiguous_range", CPU, ANY, pten::Flatten, float, double, uint8_t, int8_t, int, int64_t) {} PT_REGISTER_KERNEL("flatten_contiguous_range.mid", CPU, ANY, pten::FlattenWithXShape, float, double, uint8_t, int8_t, int, int64_t) {} PT_REGISTER_KERNEL("cast", CPU, ANY, pten::Cast, float, double, int, int64_t, int16_t, bool, uint8_t, paddle::platform::float16, paddle::platform::bfloat16, paddle::platform::complex, paddle::platform::complex) { kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); } // TODO(yuanrisheng): "reshape2" is compatible with old kernel // architecture, kernel_name should be "reshape". PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2", CPU, ANY, pten::ReshapeFromVectorVal) {} PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2.mid", CPU, ANY, pten::ReshapeFromVectorValWithXShape) {} PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2.host", CPU, ANY, pten::ReshapeFromDT) { kernel->InputAt(1).SetBackend(pten::Backend::CPU); kernel->InputAt(1).SetDataType(paddle::experimental::DataType::INT32); } PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2.host.mid", CPU, ANY, pten::ReshapeFromDTWithXShape) { kernel->InputAt(1).SetBackend(pten::Backend::CPU); kernel->InputAt(1).SetDataType(paddle::experimental::DataType::INT32); } PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2.mulhost", CPU, ANY, pten::ReshapeFromVectorDT) { kernel->InputAt(1).SetBackend(pten::Backend::CPU); kernel->InputAt(1).SetDataType(paddle::experimental::DataType::INT32); } PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2.mulhost.mid", CPU, ANY, pten::ReshapeFromVectorDTWithXShape) { kernel->InputAt(1).SetBackend(pten::Backend::CPU); kernel->InputAt(1).SetDataType(paddle::experimental::DataType::INT32); }