// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/kthvalue_grad_kernel.h" #include "paddle/fluid/operators/top_k_function_cuda.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { static int getBlockSize(int col) { if (col > 512) return 1024; else if (col > 256 && col <= 512) return 512; else if (col > 128 && col <= 256) return 256; else if (col > 64 && col <= 128) return 128; else return 64; } template void KthvalueGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& indices, const DenseTensor& d_out, int k, int axis, bool keepdim, DenseTensor* d_x) { const auto& in_dims = x.dims(); auto out_dims = indices.dims(); if (axis < 0) axis += in_dims.size(); T* x_grad_data = dev_ctx.template Alloc(d_x); const T* out_grad_data = d_out.data(); const int64_t* indices_data = indices.data(); int pre, n, post; paddle::operators::GetDims(in_dims, axis, &pre, &n, &post); int block_size = getBlockSize(post * k); int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); const int max_blocks = std::max(((max_threads - 1) / block_size + 1), 1); int grid_size = std::min(max_blocks, pre); paddle::operators::AssignGradWithAxis< T><<>>( out_grad_data, indices_data, x_grad_data, pre, post, n, 1); } } // namespace phi PD_REGISTER_KERNEL(kthvalue_grad, GPU, ALL_LAYOUT, phi::KthvalueGradKernel, float, double, int, int64_t) {}