/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MKLDNNLRNLayer.h" #include "paddle/utils/Logging.h" using namespace mkldnn; // NOLINT typedef memory::format format; namespace paddle { REGISTER_LAYER(mkldnn_lrn, MKLDNNLRNLayer); bool MKLDNNLRNLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!MKLDNNLayer::init(layerMap, parameterMap)) { return false; } /* the size of inputs for norm-layer is 1 */ CHECK_EQ(config_.inputs_size(), 1); const NormConfig& conf = config_.inputs(0).norm_conf(); localSize_ = conf.size(); alpha_ = conf.scale(); beta_ = conf.pow(); ic_ = conf.channels(); oc_ = ic_; iw_ = conf.img_size(); ow_ = conf.output_x(); ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size(); oh_ = conf.has_output_y() ? conf.output_y() : conf.output_x(); CHECK_EQ(iw_, ow_); CHECK_EQ(ih_, oh_); return true; } void MKLDNNLRNLayer::reshape( int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { CHECK_EQ(inputLayers_.size(), 1UL); reshapeInput(bs, ih, iw); // ic_ and oc can not be changed CHECK_EQ((size_t)ic, inputLayers_[0]->getOutputValue()->getElementCnt() / bs / ih / iw) << "Input channel can not be changed"; oh = ih; ow = iw; reshapeOutput(oh, ow); resizeOutput(bs, oc * oh * ow); } void MKLDNNLRNLayer::resetFwd(std::vector& pipeline, std::vector& inputs, MKLDNNMatrixPtr& out) { resetFwdBuffers(inputs[0], out); resetFwdPD(fwdPD_, inputs[0], out); resetFwdPipeline(pipeline, fwdPD_, inputs[0], out); } void MKLDNNLRNLayer::resetBwd(std::vector& pipeline, std::vector& inputs, MKLDNNMatrixPtr& out) { std::shared_ptr pd; resetBwdBuffers(inputs[0], out); resetBwdPD(pd, inputs[0], out); resetBwdPipeline(pipeline, pd, inputs[0], out); } void MKLDNNLRNLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { resetInValue(in); CHECK(in); resetOutValue(out, in->getPrimitiveDesc()); } void MKLDNNLRNLayer::resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr out) { prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring : prop_kind::forward_training; auto fwdDesc = lrn_fwd::desc(pk, algorithm::lrn_across_channels, in->getMemoryDesc(), localSize_, alpha_, beta_, 1.0f); pd.reset(new lrn_fwd::primitive_desc(fwdDesc, engine_)); // prepare workspace if necessary workspace_ = passType_ != PASS_TEST ? std::make_shared(memory(pd->workspace_primitive_desc())) : nullptr; } void MKLDNNLRNLayer::resetFwdPipeline( std::vector& pipeline, std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { fwd_ = workspace_ ? std::make_shared(lrn_fwd(*pd, *in, *workspace_, *out)) : std::make_shared(lrn_fwd(*pd, *in, *out)); pipeline.push_back(*fwd_); } void MKLDNNLRNLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { CHECK(inVals_[0] && outVal_); resetOutGrad(out, outVal_->getPrimitiveDesc()); resetInGrad(in, inVals_[0]->getPrimitiveDesc()); } void MKLDNNLRNLayer::resetBwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { pd = nullptr; if (in == nullptr) { return; } CHECK(out); auto bwdDesc = lrn_bwd::desc(algorithm::lrn_across_channels, in->getMemoryDesc(), out->getMemoryDesc(), localSize_, alpha_, beta_, 1.0f); pd.reset(new lrn_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_)); } void MKLDNNLRNLayer::resetBwdPipeline( std::vector& pipeline, std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { if (pd == nullptr) { return; } CHECK(inVals_[0]); CHECK(workspace_); bwdData_ = std::make_shared( lrn_bwd(*pd, *inVals_[0], *out, *workspace_, *in)); pipeline.push_back(*bwdData_); } } // namespace paddle