// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * This file defines the class Argument, which is the input and output of the * analysis module. All the fields that needed either by Passes or PassManagers * are contained in Argument. * * TODO(Superjomn) Find some way better to contain the fields when it grow too * big. */ #pragma once #include #include #include #include #include #include #include #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/api/paddle_analysis_config.h" #include "paddle/fluid/platform/variant.h" namespace paddle { namespace inference { namespace analysis { using framework::ir::Graph; #ifdef PADDLE_WITH_MKLDNN using VarQuantScale = std::unordered_map>; #endif /* * The argument definition of both Pass and PassManagers. * * All the fields should be registered here for clearness. */ struct Argument { Argument() = default; explicit Argument(const std::string& model_dir) { SetModelDir(model_dir); } using unique_ptr_t = std::unique_ptr>; using fusion_statis_t = std::unordered_map; using engine_opt_info_t = std::map; using anakin_max_shape_t = std::map>; bool Has(const std::string& key) const { return valid_fields_.count(key); } void PartiallyRelease() { if (Has("model_program_path")) { if (Has("model_from_memory") && model_from_memory()) { model_program_path().clear(); model_program_path().shrink_to_fit(); model_params_path().clear(); model_params_path().shrink_to_fit(); } } } #define DECL_ARGUMENT_FIELD(field__, Field, type__) \ public: \ type__& field__() { \ PADDLE_ENFORCE(Has(#field__), "There is no such field"); \ return field__##_; \ } \ void Set##Field(const type__& x) { \ field__##_ = x; \ valid_fields_.insert(#field__); \ } \ DECL_ARGUMENT_FIELD_VALID(field__); \ type__* field__##_ptr() { return &field__##_; } \ \ private: \ type__ field__##_; #define DECL_ARGUMENT_FIELD_VALID(field__) \ bool field__##_valid() { return Has(#field__); } #define DECL_ARGUMENT_UNIQUE_FIELD(field__, Field, type__) \ public: \ type__& field__() { \ PADDLE_ENFORCE_NOT_NULL(field__##_); \ PADDLE_ENFORCE(Has(#field__)); \ return *static_cast(field__##_.get()); \ } \ void Set##Field(type__* x) { \ field__##_ = \ unique_ptr_t(x, [](void* x) { delete static_cast(x); }); \ valid_fields_.insert(#field__); \ } \ void Set##Field##NotOwned(type__* x) { \ valid_fields_.insert(#field__); \ field__##_ = unique_ptr_t(x, [](void* x) {}); \ } \ DECL_ARGUMENT_FIELD_VALID(field__); \ type__* field__##_ptr() { \ PADDLE_ENFORCE(Has(#field__)); \ return static_cast(field__##_.get()); \ } \ type__* Release##Field() { \ PADDLE_ENFORCE(Has(#field__)); \ valid_fields_.erase(#field__); \ return static_cast(field__##_.release()); \ } \ \ private: \ unique_ptr_t field__##_; DECL_ARGUMENT_FIELD(predictor_id, PredictorID, int); // Model path DECL_ARGUMENT_FIELD(model_dir, ModelDir, std::string); // Model specified with program and parameters files. DECL_ARGUMENT_FIELD(model_program_path, ModelProgramPath, std::string); DECL_ARGUMENT_FIELD(model_params_path, ModelParamsPath, std::string); DECL_ARGUMENT_FIELD(model_from_memory, ModelFromMemory, bool); DECL_ARGUMENT_FIELD(engine_opt_info, EngineOptInfo, engine_opt_info_t); // The overall graph to work on. DECL_ARGUMENT_UNIQUE_FIELD(main_graph, MainGraph, framework::ir::Graph); // The overall Scope to work on. DECL_ARGUMENT_UNIQUE_FIELD(scope, Scope, framework::Scope); // The default program, loaded from disk. DECL_ARGUMENT_UNIQUE_FIELD(main_program, MainProgram, framework::ProgramDesc); // The ir passes to perform in analysis phase. DECL_ARGUMENT_FIELD(ir_analysis_passes, IrAnalysisPasses, std::vector); DECL_ARGUMENT_FIELD(analysis_passes, AnalysisPasses, std::vector); // Pass a set of op types to enable its mkldnn kernel DECL_ARGUMENT_FIELD(mkldnn_enabled_op_types, MKLDNNEnabledOpTypes, std::unordered_set); #ifdef PADDLE_WITH_MKLDNN // A set of op types to enable their quantized kernels DECL_ARGUMENT_FIELD(quantize_enabled_op_types, QuantizeEnabledOpTypes, std::unordered_set); // A set of op IDs to exclude from enabling their quantized kernels DECL_ARGUMENT_FIELD(quantize_excluded_op_ids, QuantizeExcludedOpIds, std::unordered_set); // Scales for variables to be quantized DECL_ARGUMENT_FIELD(quant_var_scales, QuantVarScales, VarQuantScale); #endif // Passed from config. DECL_ARGUMENT_FIELD(use_gpu, UseGPU, bool); DECL_ARGUMENT_FIELD(gpu_device_id, GPUDeviceId, int); DECL_ARGUMENT_FIELD(use_tensorrt, UseTensorRT, bool); DECL_ARGUMENT_FIELD(tensorrt_max_batch_size, TensorRtMaxBatchSize, int); DECL_ARGUMENT_FIELD(tensorrt_workspace_size, TensorRtWorkspaceSize, int); DECL_ARGUMENT_FIELD(tensorrt_min_subgraph_size, TensorRtMinSubgraphSize, int); DECL_ARGUMENT_FIELD(tensorrt_precision_mode, TensorRtPrecisionMode, AnalysisConfig::Precision); DECL_ARGUMENT_FIELD(tensorrt_use_static_engine, TensorRtUseStaticEngine, bool); DECL_ARGUMENT_FIELD(tensorrt_use_calib_mode, TensorRtUseCalibMode, bool); DECL_ARGUMENT_FIELD(anakin_max_input_shape, AnakinMaxInputShape, anakin_max_shape_t); DECL_ARGUMENT_FIELD(anakin_max_batch_size, AnakinMaxBatchSize, int); DECL_ARGUMENT_FIELD(anakin_min_subgraph_size, AnakinMinSubgraphSize, int); DECL_ARGUMENT_FIELD(anakin_precision_mode, AnakinPrecisionMode, AnalysisConfig::Precision); DECL_ARGUMENT_FIELD(anakin_auto_config_layout, AnakinAutoConfigLayout, bool); DECL_ARGUMENT_FIELD(use_anakin, UseAnakin, bool); DECL_ARGUMENT_FIELD(anakin_passes_filter, AnakinPassesFilter, std::vector); DECL_ARGUMENT_FIELD(anakin_ops_filter, AnakinOpsFilter, std::vector); // Memory optimized related. DECL_ARGUMENT_FIELD(enable_memory_optim, EnableMemoryOptim, bool); DECL_ARGUMENT_FIELD(static_memory_optim, StaticMemoryOptim, bool); DECL_ARGUMENT_FIELD(static_memory_optim_force_update, StaticMemoryOptimForceUpdate, bool); // Indicate which kind of sort algorithm is used for operators, the memory // optimization relays on the sort algorithm. DECL_ARGUMENT_FIELD(memory_optim_sort_kind, MemoryOptimSortKind, int); // The program transformed by IR analysis phase. DECL_ARGUMENT_UNIQUE_FIELD(ir_analyzed_program, IrAnalyzedProgram, framework::proto::ProgramDesc); DECL_ARGUMENT_FIELD(fusion_statis, FusionStatis, fusion_statis_t); private: std::unordered_set valid_fields_; }; #define ARGUMENT_CHECK_FIELD(argument__, fieldname__) \ PADDLE_ENFORCE(argument__->Has(#fieldname__), \ "the argument field [%s] should be set", #fieldname__); } // namespace analysis } // namespace inference } // namespace paddle