# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os,sys import numpy as np import logging from PIL import Image from optparse import OptionParser import paddle.utils.image_util as image_util from py_paddle import swig_paddle, util from py_paddle import DataProviderWrapperConverter from paddle.trainer.PyDataProviderWrapper import DenseSlot from paddle.trainer.config_parser import parse_config logging.basicConfig(format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s') logging.getLogger().setLevel(logging.INFO) class ImageClassifier(): def __init__(self, train_conf, use_gpu=True, model_dir=None, resize_dim=None, crop_dim=None, mean_file=None, oversample=False, is_color=True): """ train_conf: network configure. model_dir: string, directory of model. resize_dim: int, resized image size. crop_dim: int, crop size. mean_file: string, image mean file. oversample: bool, oversample means multiple crops, namely five patches (the four corner patches and the center patch) as well as their horizontal reflections, ten crops in all. """ self.train_conf = train_conf self.model_dir = model_dir if model_dir is None: self.model_dir = os.path.dirname(train_conf) self.resize_dim = resize_dim self.crop_dims = [crop_dim, crop_dim] self.oversample = oversample self.is_color = is_color self.transformer = image_util.ImageTransformer(is_color = is_color) self.transformer.set_transpose((2,0,1)) self.mean_file = mean_file mean = np.load(self.mean_file)['data_mean'] mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1]) self.transformer.set_mean(mean) # mean pixel gpu = 1 if use_gpu else 0 conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (gpu) conf = parse_config(train_conf, conf_args) swig_paddle.initPaddle("--use_gpu=%d" % (gpu)) self.network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config) assert isinstance(self.network, swig_paddle.GradientMachine) self.network.loadParameters(self.model_dir) data_size = 3 * self.crop_dims[0] * self.crop_dims[1] slots = [DenseSlot(data_size)] self.converter = util.DataProviderWrapperConverter(False, slots) def get_data(self, img_path): """ 1. load image from img_path. 2. resize or oversampling. 3. transformer data: transpose, sub mean. return K x H x W ndarray. img_path: image path. """ image = image_util.load_image(img_path, self.is_color) if self.oversample: # image_util.resize_image: short side is self.resize_dim image = image_util.resize_image(image, self.resize_dim) image = np.array(image) input = np.zeros((1, image.shape[0], image.shape[1], 3), dtype=np.float32) input[0] = image.astype(np.float32) input = image_util.oversample(input, self.crop_dims) else: image = image.resize(self.crop_dims, Image.ANTIALIAS) input = np.zeros((1, self.crop_dims[0], self.crop_dims[1], 3), dtype=np.float32) input[0] = np.array(image).astype(np.float32) data_in = [] for img in input: img = self.transformer.transformer(img).flatten() data_in.append([img.tolist()]) return data_in def forward(self, input_data): in_arg = self.converter(input_data) return self.network.forwardTest(in_arg) def forward(self, data, output_layer): """ input_data: py_paddle input data. output_layer: specify the name of probability, namely the layer with softmax activation. return: the predicting probability of each label. """ input = self.converter(data) self.network.forwardTest(input) output = self.network.getLayerOutputs(output_layer) # For oversampling, average predictions across crops. # If not, the shape of output[name]: (1, class_number), # the mean is also applicable. return output[output_layer].mean(0) def predict(self, image=None, output_layer=None): assert isinstance(image, basestring) assert isinstance(output_layer, basestring) data = self.get_data(image) prob = self.forward(data, output_layer) lab = np.argsort(-prob) logging.info("Label of %s is: %d", image, lab[0]) if __name__ == '__main__': image_size=32 crop_size=32 multi_crop=True config="vgg_16_cifar.py" output_layer="__fc_layer_1__" mean_path="data/cifar-out/batches/batches.meta" model_path=sys.argv[1] image=sys.argv[2] use_gpu=bool(int(sys.argv[3])) obj = ImageClassifier(train_conf=config, model_dir=model_path, resize_dim=image_size, crop_dim=crop_size, mean_file=mean_path, use_gpu=use_gpu, oversample=multi_crop) obj.predict(image, output_layer)