/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // disable numpy compile error #if defined(_MSC_VER) #include typedef SSIZE_T ssize_t; #endif #include #include #include #include "pybind11/numpy.h" #include "pybind11/pybind11.h" #include "paddle/fluid/eager/accumulation/accumulation_node.h" #include "paddle/fluid/eager/api/all.h" #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/backward.h" #include "paddle/fluid/eager/custom_operator/custom_operator_node.h" #include "paddle/fluid/eager/utils.h" #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/custom_operator.h" #include "paddle/fluid/framework/op_meta_info_helper.h" #include "paddle/fluid/framework/python_headers.h" #include "paddle/fluid/memory/allocation/allocator.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/dynload/dynamic_loader.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/stream/cuda_stream.h" #include "paddle/fluid/pybind/eager.h" #include "paddle/fluid/pybind/eager_utils.h" #include "paddle/fluid/pybind/exception.h" #include "paddle/fluid/pybind/tensor_py.h" #include "paddle/phi/api/ext/op_meta_info.h" #include "paddle/phi/api/lib/utils/allocator.h" #include "paddle/phi/api/lib/utils/storage.h" #include "paddle/phi/api/lib/utils/tensor_utils.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/core/compat/convert_utils.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/sparse_coo_tensor.h" #include "paddle/phi/core/sparse_csr_tensor.h" namespace paddle { namespace pybind { namespace py = ::pybind11; extern PyTypeObject* p_tensor_type; extern PyTypeObject* g_multidevicefeedreader_pytype; extern PyTypeObject* g_orderedmultidevicefeedreader_pytype; size_t PyArray_Size_(PyObject* numpy_data) { size_t res = 1; auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions; auto nd = pybind11::detail::array_proxy(numpy_data)->nd; while (nd--) { res *= (*dims++); } return res; } class EagerNumpyAllocation : public phi::Allocation { public: explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype) : Allocation( static_cast(pybind11::detail::array_proxy(numpy_data)->data), framework::DataTypeSize(dtype) * PyArray_Size_(numpy_data), paddle::platform::CPUPlace()), arr_(numpy_data) { PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument( "The underlying PyObject pointer of " "numpy array cannot be nullptr")); PADDLE_ENFORCE_NE( arr_, Py_None, platform::errors::PreconditionNotMet( "The underlying PyObject pointer of numpy array cannot be None")); Py_INCREF(arr_); } ~EagerNumpyAllocation() override { py::gil_scoped_acquire gil; Py_DECREF(arr_); } private: PyObject* arr_; }; static PyObject* eager_api_scale(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY // TODO(jiabin): Sync Tensor and Variable here when we support paddle::experimental::Tensor ret = egr::scale( reinterpret_cast(PyTuple_GET_ITEM(args, 0))->tensor, CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1), CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2), CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3), CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4)); return ToPyObject(ret); EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_run_backward(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0); auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1); egr::Backward(tensors, grad_tensors, CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2)); Py_INCREF(Py_None); return Py_None; EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_run_partial_grad(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0); auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1); auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2); auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3); auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4); auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5); auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6); auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7); std::vector result = egr::Grad(tensors, inputs, grad_tensors, retain_graph, create_graph, only_inputs, allow_unused, no_grad_vars); VLOG(1) << " in eager_api_run_partial_grad, after runing egr::Grad"; return ToPyObject(result, true /* return_py_none_if_not_initialize */); EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_tensor_copy(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY paddle::experimental::Tensor& src = reinterpret_cast(PyTuple_GET_ITEM(args, 0))->tensor; paddle::experimental::Tensor& dst = reinterpret_cast(PyTuple_GET_ITEM(args, 1))->tensor; auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2); bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3); dst = src.copy_to(place, blocking); egr::EagerUtils::autograd_meta(&dst)->SetStopGradient( egr::EagerUtils::autograd_meta(&(src))->StopGradient()); egr::EagerUtils::autograd_meta(&dst)->SetPersistable( egr::EagerUtils::autograd_meta(&(src))->Persistable()); Py_INCREF(Py_None); return Py_None; EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_read_next_tensor_list(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY auto tensor_base_list = CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0); std::vector tensor_list; tensor_list.reserve(tensor_base_list.size()); auto func = [](framework::Tensor& tensor_base) { paddle::experimental::Tensor tensor( egr::Controller::Instance().GenerateUniqueName()); auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor); autograd_meta->SetPersistable(false); autograd_meta->SetStopGradient(true); tensor.set_impl(std::make_shared(tensor_base)); return tensor; }; for (auto& tensor_base : tensor_base_list) { tensor_list.emplace_back(func(tensor_base)); } return ToPyObject(tensor_list); EAGER_CATCH_AND_THROW_RETURN_NULL } static void ConstructFwdAndBwdMap( const std::vector& vec_map, const std::string& op_type) { auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap(); if (in_out_map.find(op_type) != in_out_map.end()) { VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> "; return; } else { VLOG(7) << "Construct CustomEdgesSlotMap "; auto inputs_names = paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]); auto outputs_names = paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]); auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]); auto grad_outputs_names = paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]); auto grad_inputs_names = paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]); auto grad_attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]); std::vector> res(5); in_out_map.insert({op_type, res}); // Prepare pos map for grad_outputs VLOG(7) << "Prepare pos map for grad_outputs"; PADDLE_ENFORCE_LE( grad_outputs_names.size(), inputs_names.size(), paddle::platform::errors::InvalidArgument( "Grad outputs num should be less equal than forward inputs num.")); for (size_t i = 0; i < grad_outputs_names.size(); i++) { size_t end = grad_outputs_names[i].find("@GRAD"); PADDLE_ENFORCE_NE( end, std::string::npos, paddle::platform::errors::NotFound( "All Grad outputs should be grad and we got %s is not grad var, " "please check your op and change to fit the rule.", grad_outputs_names[i])); for (size_t j = 0; j < inputs_names.size(); j++) { if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) { VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j << " inputs: " << inputs_names[j] << " related to No." << i << " grad_outputs: " << grad_outputs_names[i]; in_out_map[op_type][0][j] = i; } } } // Prepare pos map for grad_inputs for (size_t i = 0; i < grad_inputs_names.size(); i++) { size_t end = grad_inputs_names[i].find("@GRAD"); if (end != std::string::npos) { for (size_t j = 0; j < outputs_names.size(); j++) { if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) { VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j << " outputs: " << outputs_names[j] << " related to No." << i << " grad_inputs's grad: " << grad_inputs_names[i]; in_out_map[op_type][1][j] = i; } } } else { if (std::find(outputs_names.begin(), outputs_names.end(), grad_inputs_names[i]) != outputs_names.end()) { for (size_t j = 0; j < outputs_names.size(); j++) { if (grad_inputs_names[i] == outputs_names[j]) { VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j << " outputs: " << outputs_names[j] << " related to No." << i << " grad_inputs fwd outputs: " << grad_inputs_names[i]; in_out_map[op_type][2][j] = i; } } } else { for (size_t j = 0; j < inputs_names.size(); j++) { if (grad_inputs_names[i] == inputs_names[j]) { VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j << " inputs: " << inputs_names[j] << " related to No." << i << " grad_inputs fwd inputs: " << grad_inputs_names[i]; in_out_map[op_type][3][j] = i; } } } } } // Prepare pos map for grad attrs_ for (size_t i = 0; i < grad_attrs_names.size(); i++) { auto end = std::find(attrs_names.begin(), attrs_names.end(), grad_attrs_names[i]); PADDLE_ENFORCE_NE(end, attrs_names.end(), paddle::platform::errors::NotFound( "All Grad attrs should be one of forward attrs and " "we got %s is not one of them, please check your " "op and change to fit the rule.", grad_attrs_names[i])); for (size_t j = 0; j < attrs_names.size(); j++) { if (grad_attrs_names[i] == attrs_names[j]) { VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j << " attrs: " << attrs_names[j] << " related to No." << i << " grad_attrs: " << grad_attrs_names[i]; in_out_map[op_type][4][j] = i; } } } } } static std::vector CastAttrsToTragetType( const std::vector& src, const std::vector& attrs_names) { std::vector res; PADDLE_ENFORCE_EQ(src.size(), attrs_names.size(), paddle::platform::errors::InvalidArgument( "We Expected same size of attrs and attrs_name list, " "if u got this error indicate your custom op setting " "%s attrs, but you just give %s", attrs_names.size(), src.size())); for (size_t i = 0; i < src.size(); i++) { size_t end = attrs_names[i].find(": "); std::string type_name = attrs_names[i].substr(end + 2, attrs_names.size() - end - 2); if (type_name == "int") { if (src[i].type() == typeid(bool)) { res.emplace_back(static_cast(paddle::any_cast(src[i]))); } else if (src[i].type() == typeid(int)) { res.emplace_back(src[i]); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Your No. %s attrs should only can be bool or int32, other type is " "forbidden for now but we got %s. Check your code first please", i, src[i].type().name())); } } else if (type_name == "int64_t") { if (src[i].type() == typeid(bool)) { res.emplace_back(static_cast(paddle::any_cast(src[i]))); } else if (src[i].type() == typeid(int)) { res.emplace_back(static_cast(paddle::any_cast(src[i]))); } else if (src[i].type() == typeid(int64_t)) { res.emplace_back(src[i]); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Your No. %s attrs should only can be bool or int32 or int64_t, " "other type is forbidden for now but we got %s. Check your code " "first please", i, src[i].type().name())); } } else { res.emplace_back(src[i]); } } return res; } static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY paddle::CustomOpKernelContext ctx = CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0); std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1); bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2); VLOG(7) << "Get things for python for Custom Op: " << op_type << ", trace_backward is: " << trace_backward; auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap(); PADDLE_ENFORCE_NE(meta_info_map.find(op_type), meta_info_map.end(), paddle::platform::errors::NotFound( "Can't find %s in Eager OpMetaInfoMap which should be " "created by LoadOpMetaInfoAndRegisterOp, please make " "sure you registered your op first and try again. ", op_type)); VLOG(7) << "Run Kernel of Custom Op: " << op_type; std::vector res_attrs = CastAttrsToTragetType( ctx.Attrs(), paddle::framework::OpMetaInfoHelper::GetAttrs( meta_info_map.at(op_type)[0])); ctx.EmplaceBackAttrs(res_attrs); const auto& vec_map = meta_info_map.at(op_type); (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx); VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op"; std::vector> ins_auto_grad_metas; std::vector> outs_auto_grad_metas; VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size(); ins_auto_grad_metas.resize(ctx.InputRange().size()); VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size(); outs_auto_grad_metas.resize(ctx.OutputRange().size()); for (size_t i = 0; i < ctx.InputRange().size(); i++) { ins_auto_grad_metas[i] = egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween( ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second)); } for (size_t i = 0; i < ctx.OutputRange().size(); i++) { outs_auto_grad_metas[i] = egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen( ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second)); } bool require_any_grad = false; for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) { require_any_grad = require_any_grad || egr::EagerUtils::ComputeRequireGrad( trace_backward, &(ins_auto_grad_metas[i])); } if (require_any_grad) { VLOG(6) << " Construct Grad for Custom Op: " << op_type; ConstructFwdAndBwdMap(vec_map, op_type); for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) { egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i])); } auto grad_node = std::make_shared( outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type); auto slot_map = egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type); // Prepare Grad outputs size_t no_grad_cnt = 0; for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) { const std::vector& in_tensors = ctx.InputsBetween(ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second); if (slot_map[0].find(i) != slot_map[0].end()) { grad_node->SetGradOutMeta(in_tensors, slot_map[0][i]); grad_node->AddEdges(&ins_auto_grad_metas[i], slot_map[0][i]); } else { grad_node->SetGradOutMeta(in_tensors, ins_auto_grad_metas.size() - 1 - no_grad_cnt); grad_node->AddEdges(&ins_auto_grad_metas[i], ins_auto_grad_metas.size() - 1 - no_grad_cnt); no_grad_cnt++; } } // Prepare Grad inputs with grad of fwd outputs for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) { const std::vector& out_tensors = ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second); egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i); egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node); grad_node->SetGradInMeta(out_tensors, i); egr::EagerUtils::CheckAndRetainGrad(out_tensors); } // Prepare Grad inputs with fwd outputs for (auto it = slot_map[2].begin(); it != slot_map[2].end(); it++) { VLOG(7) << "Prepare fwd_outs: " << it->first << " to grad_inputs: " << it->second; grad_node->fwd_outs[it->second] = egr::RunCustomOpNode::ConstructTensorWrapper( ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first, ctx.OutputRangeAt(it->first).second)); } // Prepare Grad inputs with fwd inputs for (auto it = slot_map[3].begin(); it != slot_map[3].end(); it++) { VLOG(7) << "Prepare fwd_ins: " << it->first << " to grad_inputs: " << it->second; grad_node->fwd_ins[it->second] = egr::RunCustomOpNode::ConstructTensorWrapper( ctx.InputsBetween(ctx.InputRangeAt(it->first).first, ctx.InputRangeAt(it->first).second)); } auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs( meta_info_map.at(op_type)[1]); std::vector attrs(attrs_names.size()); // Prepare attrs for Grad node for (auto it = slot_map[4].begin(); it != slot_map[4].end(); it++) { VLOG(7) << "Prepare fwd attrs: " << it->first << " to grad_attrs: " << it->second; attrs[it->second] = res_attrs[it->first]; } grad_node->SetAttrs(attrs); } Py_INCREF(Py_None); return Py_None; EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_sparse_coo_tensor(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0); auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1); auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2); auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3); PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(), paddle::platform::errors::Fatal( "the non-zero indices must be a DenseTensor.")); PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(), paddle::platform::errors::Fatal( "the non-zero elements must be a DenseTensor.")); auto dense_indices = std::dynamic_pointer_cast(non_zero_indices.impl()); auto dense_elements = std::dynamic_pointer_cast(non_zero_elements.impl()); // TODO(zhangkaihuo): After create SparseTensor, call coalesced() to sort and // merge duplicate indices std::shared_ptr coo_tensor = std::make_shared(*dense_indices, *dense_elements, phi::make_ddim(dense_shape)); paddle::experimental::Tensor tensor; tensor.set_impl(coo_tensor); auto name = egr::Controller::Instance().GenerateUniqueName("generated_tensor"); tensor.set_name(name); auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor); autograd_meta->SetStopGradient(static_cast(stop_gradient)); if (!autograd_meta->GetMutableGradNode()) { VLOG(3) << "Tensor(" << name << ") have not GradNode, add GradNodeAccumulation for it."; autograd_meta->SetGradNode( std::make_shared(autograd_meta)); } return ToPyObject(tensor); EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_sparse_csr_tensor(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0); auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1); auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2); auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3); auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4); PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(), paddle::platform::errors::Fatal( "the compressed non-zero rows must be a DenseTensor.")); PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(), paddle::platform::errors::Fatal( "the non-zero cols must be a DenseTensor.")); PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(), paddle::platform::errors::Fatal( "the non-zero elements must be a DenseTensor.")); auto dense_crows = std::dynamic_pointer_cast(non_zero_crows.impl()); auto dense_cols = std::dynamic_pointer_cast(non_zero_cols.impl()); auto dense_elements = std::dynamic_pointer_cast(non_zero_elements.impl()); std::shared_ptr csr_tensor = std::make_shared(*dense_crows, *dense_cols, *dense_elements, phi::make_ddim(dense_shape)); paddle::experimental::Tensor tensor; tensor.set_impl(csr_tensor); auto name = egr::Controller::Instance().GenerateUniqueName("generated_tensor"); tensor.set_name(name); auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor); autograd_meta->SetStopGradient(static_cast(stop_gradient)); if (!autograd_meta->GetMutableGradNode()) { VLOG(3) << "Tensor(" << name << ") have not GradNode, add GradNodeAccumulation for it."; autograd_meta->SetGradNode( std::make_shared(autograd_meta)); } return ToPyObject(tensor); EAGER_CATCH_AND_THROW_RETURN_NULL } #if defined(PADDLE_WITH_CUDA) static PyObject* eager_api_async_read(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY auto& src = GetTensorFromArgs("async_read", "src", args, 0, false); auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false); auto& index = GetTensorFromArgs("async_read", "index", args, 2, false); auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false); auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false); auto& count = GetTensorFromArgs("async_read", "count", args, 5, false); PADDLE_ENFORCE_EQ( src.is_gpu_pinned(), true, platform::errors::InvalidArgument("Required `src` device should be " "CUDAPinnedPlace, but received %d.", src.place())); PADDLE_ENFORCE_EQ( dst.is_gpu(), true, platform::errors::InvalidArgument( "Required `dst` device should be CUDAPlace, but received %d.", dst.place())); PADDLE_ENFORCE_EQ( index.is_cpu(), true, platform::errors::InvalidArgument( "Required `index` device should be CPUPlace, but received %d.", index.place())); PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(), true, platform::errors::InvalidArgument( "Required `buffer` device should be CUDAPinnedPlace, " "but received %d.", buffer.place())); PADDLE_ENFORCE_EQ( offset.is_cpu(), true, platform::errors::InvalidArgument( "Required `offset` device should be CPUPlace, but received %d.", offset.place())); PADDLE_ENFORCE_EQ( count.is_cpu(), true, platform::errors::InvalidArgument( "Required `count` device should be CPUPlace, but received %d.", count.place())); auto& src_tensor = src; auto* dst_tensor = &dst; auto& index_tensor = index; auto* buffer_tensor = &buffer; auto& offset_tensor = offset; auto& count_tensor = count; auto* dst_data = dst_tensor->mutable_data(dst.place()); const auto& deviceId = paddle::platform::GetCurrentDeviceId(); PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(), platform::errors::InvalidArgument( "`src` and `dst` should have same tensor shape, " "except for the first dimension.")); PADDLE_ENFORCE_EQ(src_tensor.dims().size(), buffer_tensor->dims().size(), platform::errors::InvalidArgument( "`src` and `buffer` should have same tensor shape, " "except for the first dimension.")); for (int i = 1; i < src_tensor.dims().size(); i++) { PADDLE_ENFORCE_EQ(src_tensor.dims()[i], dst_tensor->dims()[i], platform::errors::InvalidArgument( "`src` and `dst` should have the same tensor shape, " "except for the first dimension.")); PADDLE_ENFORCE_EQ( src_tensor.dims()[i], buffer_tensor->dims()[i], platform::errors::InvalidArgument( "`src` and `buffer` should have the same tensor shape, " "except for the first dimension.")); } PADDLE_ENFORCE_EQ(index_tensor.dims().size(), 1, platform::errors::InvalidArgument( "`index` tensor should be one-dimensional.")); auto stream = paddle::platform::stream::get_current_stream(deviceId)->raw_stream(); int64_t numel = 0; // total copy length int64_t copy_flag = offset_tensor.dims()[0]; int64_t size = src_tensor.numel() / src_tensor.dims()[0]; if (copy_flag != 0) { PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1, platform::errors::InvalidArgument( "`offset` tensor should be one-dimensional.")); PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1, platform::errors::InvalidArgument( "`count` tensor should be one-dimensional.")); PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(), platform::errors::InvalidArgument( "`offset` and `count` tensor size dismatch.")); auto* offset_data = offset_tensor.data(); auto* count_data = count_tensor.data(); for (int64_t i = 0; i < count_tensor.numel(); i++) { numel += count_data[i]; } PADDLE_ENFORCE_LE( numel + index_tensor.numel(), buffer_tensor->dims()[0], platform::errors::InvalidArgument("Buffer tensor size is too small.")); PADDLE_ENFORCE_LE( numel + index_tensor.numel(), dst_tensor->dims()[0], platform::errors::InvalidArgument("Target tensor size is too small.")); int64_t src_offset, dst_offset = 0, c; auto* src_data = src_tensor.data(); for (int64_t i = 0; i < offset_tensor.numel(); i++) { src_offset = offset_data[i], c = count_data[i]; PADDLE_ENFORCE_LE( src_offset + c, src_tensor.dims()[0], platform::errors::InvalidArgument("Invalid offset or count index.")); PADDLE_ENFORCE_LE( dst_offset + c, dst_tensor->dims()[0], platform::errors::InvalidArgument("Invalid offset or count index.")); cudaMemcpyAsync(dst_data + (dst_offset * size), src_data + (src_offset * size), c * size * sizeof(float), cudaMemcpyHostToDevice, stream); dst_offset += c; } } else { PADDLE_ENFORCE_LE( index_tensor.numel(), buffer_tensor->dims()[0], platform::errors::InvalidArgument("Buffer tensor size is too small.")); } // Select the index data to the buffer auto index_select = [](const paddle::experimental::Tensor& src_tensor, const paddle::experimental::Tensor& index_tensor, paddle::experimental::Tensor* buffer_tensor) { auto* src_data = src_tensor.data(); auto* index_data = index_tensor.data(); auto* buffer_data = buffer_tensor->data(); const int& slice_size = src_tensor.numel() / src_tensor.dims()[0]; const int& copy_bytes = slice_size * sizeof(float); int64_t c = 0; for (int64_t i = 0; i < index_tensor.numel(); i++) { std::memcpy(buffer_data + c * slice_size, src_data + index_data[i] * slice_size, copy_bytes); c += 1; } }; index_select(src_tensor, index_tensor, buffer_tensor); // Copy the data to device memory cudaMemcpyAsync(dst_data + (numel * size), buffer_tensor->data(), index_tensor.numel() * size * sizeof(float), cudaMemcpyHostToDevice, stream); Py_INCREF(Py_None); return Py_None; EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_async_write(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY auto& src = GetTensorFromArgs("async_write", "src", args, 0, false); auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false); auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false); auto& count = GetTensorFromArgs("async_write", "count", args, 3, false); PADDLE_ENFORCE_EQ( src.is_gpu(), true, platform::errors::InvalidArgument( "Required `src` device should be CUDAPlace, but received %d. ", src.place())); PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(), true, platform::errors::InvalidArgument( "Required `dst` device should be CUDAPinnedPlace, " "but received %d. ", dst.place())); PADDLE_ENFORCE_EQ( offset.is_cpu(), true, platform::errors::InvalidArgument("Required `offset` device should " "be CPUPlace, but received %d. ", offset.place())); PADDLE_ENFORCE_EQ( count.is_cpu(), true, platform::errors::InvalidArgument( "Required `count` device should be CPUPlace, but received %d. ", count.place())); // TODO(daisiming): In future, add index as arguments following // async_read. auto& src_tensor = src; auto* dst_tensor = &dst; auto& offset_tensor = offset; auto& count_tensor = count; const auto& deviceId = paddle::platform::GetCurrentDeviceId(); PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1, platform::errors::InvalidArgument( "`offset` tensor should be one-dimensional.")); PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1, platform::errors::InvalidArgument( "`count` tensor should be one-dimensional.")); PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(), platform::errors::InvalidArgument( "`offset` and `count` tensor size dismatch.")); PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(), platform::errors::InvalidArgument( "`src` and `dst` should have the same tensor shape, " "except for the first dimension.")); for (int i = 1; i < src_tensor.dims().size(); i++) { PADDLE_ENFORCE_EQ(src_tensor.dims()[i], dst_tensor->dims()[i], platform::errors::InvalidArgument( "`src` and `dst` should have the same tensor shape, " "except for the first dimension.")); } auto stream = paddle::platform::stream::get_current_stream(deviceId)->raw_stream(); int64_t size = src_tensor.numel() / src_tensor.dims()[0]; auto* src_data = src_tensor.data(); auto* dst_data = dst_tensor->data(); const int64_t* offset_data = offset_tensor.data(); const int64_t* count_data = count_tensor.data(); int64_t src_offset = 0, dst_offset, c; for (int64_t i = 0; i < offset_tensor.numel(); i++) { dst_offset = offset_data[i], c = count_data[i]; PADDLE_ENFORCE_LE( src_offset + c, src_tensor.dims()[0], platform::errors::InvalidArgument("Invalid offset or count index")); PADDLE_ENFORCE_LE( dst_offset + c, dst_tensor->dims()[0], platform::errors::InvalidArgument("Invalid offset or count index")); cudaMemcpyAsync(dst_data + (dst_offset * size), src_data + (src_offset * size), c * size * sizeof(float), cudaMemcpyDeviceToHost, stream); src_offset += c; } Py_INCREF(Py_None); return Py_None; EAGER_CATCH_AND_THROW_RETURN_NULL } static PyObject* eager_api_to_uva_tensor(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY VLOG(4) << "Running in eager_api_to_uva_tensor."; auto new_tensor = std::shared_ptr( new paddle::experimental::Tensor( egr::Controller::Instance().GenerateUniqueName())); PyObject* obj = PyTuple_GET_ITEM(args, 0); auto array = py::cast(py::handle(obj)); int device_id = 0; PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1); if (Py_device_id) { device_id = CastPyArg2AttrLong(Py_device_id, 1); } if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else if (py::isinstance>(array)) { SetUVATensorFromPyArray(new_tensor, array, device_id); } else { // obj may be any type, obj.cast() may be failed, // then the array.dtype will be string of unknown meaning. PADDLE_THROW(platform::errors::InvalidArgument( "Input object type error or incompatible array data type. " "tensor.set() supports array with bool, float16, float32, " "float64, int8, int16, int32, int64," "please check your input or input array data type.")); } return ToPyObject(*(new_tensor.get())); EAGER_CATCH_AND_THROW_RETURN_NULL } #endif PyMethodDef variable_functions[] = { // TODO(jiabin): Remove scale when we have final state tests {"scale", (PyCFunction)(void (*)(void))eager_api_scale, METH_VARARGS | METH_KEYWORDS, NULL}, {"run_backward", (PyCFunction)(void (*)(void))eager_api_run_backward, METH_VARARGS | METH_KEYWORDS, NULL}, {"run_partial_grad", (PyCFunction)(void (*)(void))eager_api_run_partial_grad, METH_VARARGS | METH_KEYWORDS, NULL}, {"_run_custom_op", (PyCFunction)(void (*)(void))eager_api_run_costum_op, METH_VARARGS | METH_KEYWORDS, NULL}, {"tensor_copy", (PyCFunction)(void (*)(void))eager_api_tensor_copy, METH_VARARGS | METH_KEYWORDS, NULL}, {"read_next_tensor_list", (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list, METH_VARARGS | METH_KEYWORDS, NULL}, /**sparse functions**/ {"sparse_coo_tensor", (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor, METH_VARARGS | METH_KEYWORDS, NULL}, {"sparse_csr_tensor", (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor, METH_VARARGS | METH_KEYWORDS, NULL}, /**sparse functions**/ #if defined(PADDLE_WITH_CUDA) {"async_read", (PyCFunction)(void (*)(void))eager_api_async_read, METH_VARARGS | METH_KEYWORDS, NULL}, {"async_write", (PyCFunction)(void (*)(void))eager_api_async_write, METH_VARARGS | METH_KEYWORDS, NULL}, {"to_uva_tensor", (PyCFunction)(void (*)(void))eager_api_to_uva_tensor, METH_VARARGS | METH_KEYWORDS, NULL}, #endif {NULL, NULL, 0, NULL}}; void BindFunctions(PyObject* module) { if (PyModule_AddFunctions(module, variable_functions) < 0) { PADDLE_THROW(platform::errors::Fatal( "Init Paddle erroe in BindFunctions(PyModule_AddFunctions).")); return; } } } // namespace pybind } // namespace paddle