# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import paddle.fluid.framework as framework import paddle.fluid.optimizer as optimizer import paddle.fluid.regularizer as regularizer import paddle.fluid.clip as clip import paddle.compat as cpt from paddle.fluid.backward import append_backward paddle.enable_static() class TestDGCMomentumOptimizer(unittest.TestCase): class MockDGCMomentum(optimizer.DGCMomentumOptimizer): def get_accumulators(self): return self._accumulators def get_velocity_str(self): return self._u_velocity_acc_str def check_dgc_momentum_optimizer(self, dims=[5, 10, 8], name="momentum", regularization=None, use_recompute=False): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[dims[0], dims[1]], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}, regularizer=None if regularization is not None else regularizer.L2DecayRegularizer(2e-4)) mul_y = block.create_var( dtype="float32", shape=[dims[1], dims[2]], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[dims[0], dims[2]], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) learning_rate = 0.01 dgc_momentum_optimizer = self.MockDGCMomentum( learning_rate=learning_rate, momentum=0.2, rampup_begin_step=0, num_trainers=2, regularization=regularization, grad_clip=clip.GradientClipByNorm(1.0)) if use_recompute: dgc_momentum_optimizer = optimizer.RecomputeOptimizer( dgc_momentum_optimizer) dgc_momentum_optimizer._set_checkpoints([]) dgc_momentum_optimizer.get_accumulators = dgc_momentum_optimizer._optimizer.get_accumulators dgc_momentum_optimizer.get_velocity_str = dgc_momentum_optimizer._optimizer.get_velocity_str mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) # params_grads = append_backward(mean_out) params_grads = dgc_momentum_optimizer.backward( mean_out, startup_program=init_program) with framework.program_guard(program, init_program): opts = dgc_momentum_optimizer.apply_gradients(params_grads) accumulator_count = 1 if name == "momentum" else 2 self.assertEqual(len(params_grads), 1) self.assertEqual( len(dgc_momentum_optimizer.get_accumulators()), accumulator_count) self.assertEqual(len(opts), 2) sgd_op = opts[-1] self.assertEqual([op.type for op in opts], ["scale", name]) self.assertFalse(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = dgc_momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), accumulator_count) self.assertTrue( dgc_momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[dgc_momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program # dgc not apply include: lr, dgc(count, nranks, begin step), (u,) # dgc apply include: lr, dgc(count, nranks, begin_step), (u,v,k,encode,gather) init_ops_count = 5 if name == "momentum" else 9 init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), init_ops_count) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) # check dgc op regularization coeff train_ops = program.global_block().ops for op in train_ops: if op.type == "dgc": coeff = 2e-4 if regularization is None else 1e-4 self.assertAlmostEqual(op.attr('regular_coeff'), coeff) print("dgc regular_coeff=" + str(coeff)) def test_tpyeError(self): # the type of DGCMomentumOptimizer(grad_clip=) must be 'GradientClipByNorm' with self.assertRaises(TypeError): dgc_momentum_optimizer = self.MockDGCMomentum( learning_rate=0.01, momentum=0.2, rampup_begin_step=0, num_trainers=2, grad_clip=clip.GradientClipByGlobalNorm(1.0)) def test_momentum_without_dgc(self): self.check_dgc_momentum_optimizer( regularization=regularizer.L1Decay(1e-4)) def test_momentum_with_dgc(self): # 16 * 1024 = 16384, use dgc momentum self.check_dgc_momentum_optimizer( dims=[16, 1024, 8], name="dgc_momentum", regularization=regularizer.L2Decay(1e-4)) # check param.regularizer in dgc self.check_dgc_momentum_optimizer( dims=[16, 1024, 8], name="dgc_momentum") def test_momentum_with_dgc_recompute(self): # 16 * 1024 = 16384, use dgc momentum self.check_dgc_momentum_optimizer( dims=[16, 1024, 8], name="dgc_momentum", regularization=regularizer.L2Decay(1e-4), use_recompute=True) if __name__ == '__main__': unittest.main()