# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.distributed.fleet as fleet from paddle.vision.models import resnet50 as resnet import numpy as np import paddle.nn as nn __all__ = ['resnet_model', ] def get_seed_from_env(): return int(os.environ.get("SEED", 0)) def resnet_model(place, batch_size, image_shape=[3, 224, 224], num_classes=1000): image = paddle.static.data( shape=[batch_size] + image_shape, dtype='float32', name='image') label = paddle.static.data( shape=[batch_size, 1], dtype='int64', name='label') model = resnet(pretrained=False) loss_fn = nn.loss.CrossEntropyLoss() pred_out = model(image) loss = loss_fn(pred_out, label) optimizer = paddle.optimizer.Adam(learning_rate=1e-3) dist_strategy = fleet.DistributedStrategy() dist_strategy.fuse_all_reduce_ops = False dist_strategy.without_graph_optimization = True fleet.init(is_collective=True, strategy=dist_strategy) optimizer = fleet.distributed_optimizer(optimizer) optimizer.minimize(loss) rank = paddle.distributed.get_rank() def reader(): seed = get_seed_from_env() np.random.seed(seed + rank) for _ in range(10): image_np = np.random.random(size=image.shape).astype('float32') label_np = np.random.randint( low=0, high=num_classes, size=label.shape).astype('int64') yield image_np, label_np main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() return main_program, startup_program, [image, label], [loss], reader