/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include #include #include "PaddleCAPI.h" #include "paddle/utils/ThreadLocal.h" static std::vector randomBuffer(size_t bufSize) { auto& eng = paddle::ThreadLocalRandomEngine::get(); std::uniform_real_distribution dist(-1.0, 1.0); std::vector retv; retv.reserve(bufSize); for (size_t i = 0; i < bufSize; ++i) { retv.push_back(dist(eng)); } return retv; } TEST(GradientMachine, testPredict) { paddle::TrainerConfigHelper config("./test_predict_network.py"); std::string buffer; ASSERT_TRUE(config.getModelConfig().SerializeToString(&buffer)); PD_GradientMachine machine; ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineCreateForPredict( &machine, &buffer[0], (int)buffer.size())); std::unique_ptr gm( paddle::GradientMachine::create(config.getModelConfig())); ASSERT_NE(nullptr, gm); gm->randParameters(); gm->saveParameters("./"); ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineLoadParameterFromDisk(machine, "./")); PD_GradientMachine machineSlave; ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineCreateSharedParam( machine, &buffer[0], (int)buffer.size(), &machineSlave)); std::swap(machineSlave, machine); paddle_arguments outArgs = paddle_arguments_create_none(); paddle_arguments inArgs = paddle_arguments_create_none(); ASSERT_EQ(kPD_NO_ERROR, paddle_arguments_resize(inArgs, 1)); paddle_matrix mat = paddle_matrix_create(1, 100, false); static_assert(std::is_same::value, ""); auto data = randomBuffer(100); pd_real* rowPtr; ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_get_row(mat, 0, &rowPtr)); memcpy(rowPtr, data.data(), data.size() * sizeof(pd_real)); ASSERT_EQ(kPD_NO_ERROR, paddle_arguments_set_value(inArgs, 0, mat)); ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineForward(machine, inArgs, outArgs, false)); uint64_t sz; ASSERT_EQ(kPD_NO_ERROR, paddle_arguments_size(outArgs, &sz)); ASSERT_EQ(1UL, sz); ASSERT_EQ(kPD_NO_ERROR, paddle_arguments_value(outArgs, 0, mat)); std::vector paddleInArgs; std::vector paddleOutArgs; paddleInArgs.resize(1); paddleInArgs[0].value = paddle::Matrix::create(data.data(), 1, 100, false, false); gm->forward(paddleInArgs, &paddleOutArgs, paddle::PASS_TEST); auto matPaddle = paddleOutArgs[0].value; uint64_t height, width; ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_get_shape(mat, &height, &width)); ASSERT_EQ(matPaddle->getHeight(), height); ASSERT_EQ(matPaddle->getWidth(), width); ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_get_row(mat, 0, &rowPtr)); for (size_t i = 0; i < width; ++i) { ASSERT_NEAR(matPaddle->getData()[i], rowPtr[i], 1e-5); } ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_destroy(mat)); ASSERT_EQ(kPD_NO_ERROR, paddle_arguments_destroy(inArgs)); ASSERT_EQ(kPD_NO_ERROR, paddle_arguments_destroy(outArgs)); std::swap(machineSlave, machine); ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineDestroy(machineSlave)); ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineDestroy(machine)); } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); std::vector argvs; argvs.push_back(strdup("--use_gpu=false")); PDInit((int)argvs.size(), argvs.data()); for (auto each : argvs) { free(each); } return RUN_ALL_TESTS(); }