# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import unittest import paddle.v2.fluid.framework as framework import paddle.v2.fluid.initializer as initializer DELTA = 0.00001 class TestConstantInitializer(unittest.TestCase): def test_constant_initializer_default_value(self): """Test the constant initializer with default value """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.ConstantInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'fill_constant') self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA) def test_constant_initializer(self): """Test constant initializer with supplied value """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.ConstantInitializer(2.3)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'fill_constant') self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA) class TestUniformInitializer(unittest.TestCase): def test_uniform_initializer_default_value(self): """Test the uniform initializer with default value """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.UniformInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_uniform_initializer_random_seed(self): """Test the uniform initializer with manually setting seed """ program = framework.Program() program.random_seed = 123 block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.UniformInitializer()) block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.UniformInitializer(seed=456)) init_op = block.ops[1] self.assertEqual(init_op.attr("seed"), 123) init_op1 = block.ops[0] self.assertEqual(init_op1.attr("seed"), 456) def test_uniform_initializer(self): """Test uniform initializer with supplied attributes """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.UniformInitializer(-4.2, 3.1, 123)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA) self.assertEqual(init_op.attr('seed'), 123) class TestNormalInitializer(unittest.TestCase): def test_normal_initializer_default_value(self): """Test the normal initializer with default value """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.NormalInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_initializer(self): """Test normal initializer with supplied attributes """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.NormalInitializer(2.3, 1.9, 123)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA) self.assertEqual(init_op.attr('seed'), 123) class TestXavierInitializer(unittest.TestCase): def test_uniform_xavier_initializer(self): """Test Xavier initializer with uniform distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1])) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_uniform_xavier_initializer_conv(self): """Test Xavier initializer with uniform distribution on for convolutions. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.XavierInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') receptive_field_size = float(15 * 20) limit = np.sqrt(6.0 / ( (param.shape[0] + param.shape[1]) * receptive_field_size)) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_xavier_initializer(self): """Test Xavier initializer with normal distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') std = np.sqrt(2.0 / (param.shape[0] + param.shape[1])) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_xavier_initializer_conv(self): """Test Xavier initializer with normal distribution on for convolutions. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.XavierInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') receptive_field_size = float(15 * 20) std = np.sqrt(2.0 / ( (param.shape[0] + param.shape[1]) * receptive_field_size)) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_xavier_initializer_supplied_arguments(self): """Test the Xavier initializer with supplied arguments """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierInitializer( fan_in=12, fan_out=23, seed=134)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / (12 + 23)) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 134) class TestMSRAInitializer(unittest.TestCase): def test_uniform_msra_initializer(self): """Test MSRA initializer with uniform distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.MSRAInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / param.shape[0]) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_uniform_msra_initializer_conv(self): """Test MSRA initializer with uniform distribution on for convolutions. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.MSRAInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') receptive_field_size = float(15 * 20) limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size)) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_msra_initializer(self): """Test MSRA initializer with normal distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.MSRAInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') std = np.sqrt(2.0 / param.shape[0]) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_msra_initializer_conv(self): """Test MSRA initializer with normal distribution on for convolutions. """ program = framework.Program() block = program.global_block() param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.MSRAInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') receptive_field_size = float(15 * 20) std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size)) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_msra_initializer_supplied_arguments(self): """Test the MSRA initializer with supplied arguments """ program = framework.Program() block = program.global_block() block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.MSRAInitializer( fan_in=12, seed=134)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / 12) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 134) if __name__ == '__main__': unittest.main()