// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h" #include #include #include namespace paddle { namespace operators { // NOTE(dengkaipeng): Input(Out) is unnecessary in reduce_mean_grad // calcualtion, but will incur a reduce_mean_grad op after // reduce_mean_grad_grad, delete Input(Out) here. // This change has no effect on reduce_mean_grad calculations. template class ReduceMeanOpGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: std::unique_ptr Apply() const override { std::unique_ptr op(new T()); op->SetType("reduce_mean_grad"); op->SetInput("X", this->Input("X")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); return op; } }; class ReduceMeanDoubleGradDescMaker : public framework::GradOpDescMakerBase { public: using framework::GradOpDescMakerBase::GradOpDescMakerBase; std::vector> operator()() const override { std::vector> ops; auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx auto out_grads = InputGrad(framework::GradVarName("Out")); if (!out_grads.empty()) { auto* out_grad_op = new framework::OpDesc(); out_grad_op->SetType("reduce_mean"); out_grad_op->SetInput("X", x_gg); out_grad_op->SetAttrMap(Attrs()); out_grad_op->SetOutput("Out", out_grads); ops.emplace_back(out_grad_op); } return ops; } }; class ReduceMeanDoubleGradOpBaseMaker : public imperative::GradOpBaseMakerBase { public: using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase; std::vector> operator()() const override { std::vector> ops; auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx auto out_grads = InputGrad(framework::GradVarName("Out")); if (!out_grads.empty()) { auto* out_grad_op = new imperative::OpBase(); out_grad_op->SetType("reduce_mean"); out_grad_op->SetInput("X", x_gg); out_grad_op->SetAttrMap(Attrs()); out_grad_op->SetOutput("Out", out_grads); ops.emplace_back(out_grad_op); } return ops; } }; DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ReduceMeanGradNoNeedBufferVarInference, "X"); } // namespace operators } // namespace paddle class __reduce_meanMaker__ : public ops::ReduceOpMaker { protected: virtual std::string GetName() const { return "reduce_mean"; } virtual std::string GetOpType() const { return "Reduce reduce_mean"; } }; REGISTER_OPERATOR(reduce_mean, ops::ReduceOp, __reduce_meanMaker__, ops::ReduceMeanOpGradMaker, ops::ReduceMeanOpGradMaker); REGISTER_OPERATOR(reduce_mean_grad, ops::ReduceGradOp, ops::ReduceMeanDoubleGradDescMaker, ops::ReduceMeanDoubleGradOpBaseMaker, ops::ReduceMeanGradNoNeedBufferVarInference); REGISTER_OP_CPU_KERNEL(reduce_mean, ops::ReduceKernel, ops::ReduceKernel, ops::ReduceKernel, ops::ReduceKernel); template using CPUReduceMeanGradKernel = ops::ReduceGradKernel; REGISTER_OP_CPU_KERNEL(reduce_mean_grad, CPUReduceMeanGradKernel, CPUReduceMeanGradKernel, CPUReduceMeanGradKernel, CPUReduceMeanGradKernel);