# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype from ..fluid import core, layers # TODO: define searching & indexing functions of a tensor from ..fluid.layers import argmin #DEFINE_ALIAS from ..fluid.layers import has_inf #DEFINE_ALIAS from ..fluid.layers import has_nan #DEFINE_ALIAS from ..fluid.layers import topk #DEFINE_ALIAS __all__ = [ 'argmax', 'argmin', 'argsort', 'has_inf', 'has_nan', 'masked_select', 'topk', 'where', 'index_select', 'nonzero', 'sort', 'index_sample', ] from paddle.common_ops_import import * def argsort(x, axis=-1, descending=False, name=None): """ :alias_main: paddle.argsort :alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True. Args: x(Tensor): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. descending(bool, optional) : Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: sorted indices(with the same shape as ``x`` and with data type int64). Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() input_array = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]).astype(np.float32) x = paddle.to_variable(input_array) out1 = paddle.argsort(x=x, axis=-1) out2 = paddle.argsort(x=x, axis=0) out3 = paddle.argsort(x=x, axis=1) print(out1.numpy()) #[[[0 3 1 2] # [0 1 2 3] # [2 3 0 1]] # [[1 3 2 0] # [0 1 2 3] # [2 0 3 1]]] print(out2.numpy()) #[[[0 1 1 1] # [0 0 0 0] # [1 1 1 0]] # [[1 0 0 0] # [1 1 1 1] # [0 0 0 1]]] print(out3.numpy()) #[[[1 1 1 2] # [0 0 2 0] # [2 2 0 1]] # [[2 0 2 0] # [1 1 0 2] # [0 2 1 1]]] """ if in_dygraph_mode(): _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending) return ids check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort') helper = LayerHelper("argsort", **locals()) out = helper.create_variable_for_type_inference( dtype=x.dtype, stop_gradient=True) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': x}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis, 'descending': descending}) return ids def argmax(input, axis=None, dtype=None, out=None, keepdims=False, name=None): """ :alias_main: paddle.argmax :alias: paddle.argmax,paddle.tensor.argmax,paddle.tensor.search.argmax This OP computes the indices of the max elements of the input tensor's element along the provided axis. Args: input(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(input). when axis<0, it works the same way as axis+R. Default is None, it will use the last dim to select indices of max value. dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can be int32, int64. The default value is None, and it will return the int64 indices. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. Defalut is None. keepdims(bool, optional): Keep the axis that do the select max. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = paddle.argmax(input=x, axis=-1) out2 = paddle.argmax(input=x, axis=0) out3 = paddle.argmax(input=x, axis=1) out4 = paddle.argmax(input=x, axis=2) out5 = paddle.argmax(input=x, axis=2, keepdims=True) print(out1.numpy()) # [[2 3 1] # [0 3 1]] print(out2.numpy()) # [[0 0 0 0] # [1 1 1 1] # [0 0 0 1]] print(out3.numpy()) # [[2 2 0 1] # [0 1 1 1]] print(out4.numpy()) # [[2 3 1] # [0 3 1]] print(out5.numpy()) #array([[[2], # [3], # [1]], # [[0], # [3], # [1]]]) """ helper = LayerHelper("arg_max", **locals()) var_dtype = None attrs = {} if dtype is not None: check_dtype(dtype, 'create data type', ['int32', 'int64'], 'arg_max') var_dtype = convert_np_dtype_to_dtype_(dtype) attrs["dtype"] = var_dtype else: var_dtype = VarDesc.VarType.INT64 if out is None: out = helper.create_variable_for_type_inference(var_dtype) if axis is None: axis = -1 attrs['keepdims'] = keepdims attrs['axis'] = axis helper.append_op( type='arg_max', inputs={'X': input}, outputs={'Out': [out]}, attrs=attrs) out.stop_gradient = True return out def index_select(x, index, axis=0, name=None): """ :alias_main: paddle.index_select :alias: paddle.tensor.index_select, paddle.tensor.search.index_select Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using the entries in ``index`` which is a Tensor. The returned tensor has the same number of dimensions as the original ``x`` tensor. The dim-th dimension has the same size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. Args: x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64. index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64. axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor with same data type as ``x``. Raises: TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of float32, float64, int32 and int64. TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() # Now we are in imperative mode data = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]) data_index = np.array([0, 1, 1]).astype('int32') x = paddle.to_tensor(data) index = paddle.to_tensor(data_index) out_z1 = paddle.index_select(x=x, index=index) #[[1. 2. 3. 4.] # [5. 6. 7. 8.] # [5. 6. 7. 8.]] out_z2 = paddle.index_select(x=x, index=index, axis=1) #[[ 1. 2. 2.] # [ 5. 6. 6.] # [ 9. 10. 10.]] """ if in_dygraph_mode(): return core.ops.index_select(x, index, 'dim', axis) helper = LayerHelper("index_select", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.index_select') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'paddle.tensor.search.index_select') out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='index_select', inputs={'X': x, 'Index': index}, outputs={'Out': out}, attrs={'dim': axis}) return out def nonzero(input, as_tuple=False): """ :alias_main: paddle.nonzero :alias: paddle.nonzero,paddle.tensor.nonzero,paddle.tensor.search.nonzero Return a tensor containing the indices of all non-zero elements of the `input` tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension in `input`, each containing the indices (in that dimension) of all non-zero elements of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1]. Args: inputs (Variable): The input tensor variable. as_tuple (bool): Return type, Tensor or tuple of Tensor. Returns: Variable. The data type is int64. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np data1 = np.array([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]]) data2 = np.array([0.0, 1.0, 0.0, 3.0]) data3 = np.array([0.0, 0.0, 0.0]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(data1) x2 = fluid.dygraph.to_variable(data2) x3 = fluid.dygraph.to_variable(data3) out_z1 = paddle.nonzero(x1) print(out_z1.numpy()) #[[0 0] # [1 1] # [2 2]] out_z1_tuple = paddle.nonzero(x1, as_tuple=True) for out in out_z1_tuple: print(out.numpy()) #[[0] # [1] # [2]] #[[0] # [1] # [2]] out_z2 = paddle.nonzero(x2) print(out_z2.numpy()) #[[1] # [3]] out_z2_tuple = paddle.nonzero(x2, as_tuple=True) for out in out_z2_tuple: print(out.numpy()) #[[1] # [3]] out_z3 = paddle.nonzero(x3) print(out_z3.numpy()) #[] out_z3_tuple = paddle.nonzero(x3, as_tuple=True) for out in out_z3_tuple: print(out.numpy()) #[] """ list_out = [] shape = input.shape rank = len(shape) if in_dygraph_mode(): outs = core.ops.where_index(input) else: outs = layers.where(input) if not as_tuple: return outs elif rank == 1: return tuple([outs]) else: for i in range(rank): list_out.append( layers.slice( outs, axes=[rank - 1], starts=[i], ends=[i + 1])) return tuple(list_out) def sort(x, axis=-1, descending=False, name=None): """ :alias_main: paddle.sort :alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True. Args: x(Tensor): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. descending(bool, optional) : Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: sorted tensor(with the same shape and data type as ``x``). Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() input_array = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]).astype(np.float32) x = paddle.to_variable(input_array) out1 = paddle.sort(x=x, axis=-1) out2 = paddle.sort(x=x, axis=0) out3 = paddle.sort(x=x, axis=1) print(out1.numpy()) #[[[5. 5. 8. 9.] # [0. 0. 1. 7.] # [2. 4. 6. 9.]] # [[2. 2. 4. 5.] # [4. 7. 7. 9.] # [0. 1. 6. 7.]]] print(out2.numpy()) #[[[5. 2. 4. 2.] # [0. 0. 1. 7.] # [1. 7. 0. 4.]] # [[5. 8. 9. 5.] # [4. 7. 7. 9.] # [6. 9. 2. 6.]]] print(out3.numpy()) #[[[0. 0. 1. 4.] # [5. 8. 2. 5.] # [6. 9. 9. 7.]] # [[1. 2. 0. 2.] # [4. 7. 4. 6.] # [5. 7. 7. 9.]]] """ if in_dygraph_mode(): out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending) return out helper = LayerHelper("sort", **locals()) out = helper.create_variable_for_type_inference( dtype=x.dtype, stop_gradient=False) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': x}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis, 'descending': descending}) return out def where(condition, x, y, name=None): """ :alias_main: paddle.where :alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where Return a tensor of elements selected from either $x$ or $y$, depending on $condition$. .. math:: out_i = \\begin{cases} x_i, \quad \\text{if} \\ condition_i \\ is \\ True \\\\ y_i, \quad \\text{if} \\ condition_i \\ is \\ False \\\\ \\end{cases} Args: condition(Variable): The condition to choose x or y. x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64. y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor with the same data dype as x. Examples: .. code-block:: python import paddle import numpy as np import paddle.fluid as fluid x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32") y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32") with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(x_i) y = fluid.dygraph.to_variable(y_i) out = paddle.where(x>1, x, y) print(out.numpy()) #out: [1.0, 1.0, 3.2, 1.2] """ if not in_dygraph_mode(): check_variable_and_dtype(condition, 'condition', ['bool'], 'where') check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where') check_variable_and_dtype( y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where') x_shape = list(x.shape) y_shape = list(y.shape) if x_shape == y_shape: if in_dygraph_mode(): return core.ops.where(condition, x, y) else: helper = LayerHelper("where", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='where', inputs={'Condition': condition, 'X': x, 'Y': y}, outputs={'Out': [out]}) return out else: cond_int = layers.cast(condition, x.dtype) cond_not_int = layers.cast(layers.logical_not(condition), x.dtype) out1 = layers.elementwise_mul(x, cond_int) out2 = layers.elementwise_mul(y, cond_not_int) out = layers.elementwise_add(out1, out2) return out def index_sample(x, index): """ :alias_main: paddle.index_sample :alias: paddle.index_sample,paddle.tensor.index_sample,paddle.tensor.search.index_sample **IndexSample Layer** IndexSample OP returns the element of the specified location of X, and the location is specified by Index. .. code-block:: text Given: X = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] Index = [[0, 1, 3], [0, 2, 4]] Then: Out = [[1, 2, 4], [6, 8, 10]] Args: x (Variable): The source input tensor with 2-D shape. Supported data type is int32, int64, float32, float64. index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. Data type is int32 or int64. Returns: output (Variable): The output is a tensor with the same shape as index. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np data = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]).astype('float32') data_index = np.array([[0, 1, 2], [1, 2, 3], [0, 0, 0]]).astype('int32') target_data = np.array([[100, 200, 300, 400], [500, 600, 700, 800], [900, 1000, 1100, 1200]]).astype('int32') with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(data) index = fluid.dygraph.to_variable(data_index) target = fluid.dygraph.to_variable(target_data) out_z1 = paddle.index_sample(x, index) print(out_z1.numpy()) #[[1. 2. 3.] # [6. 7. 8.] # [9. 9. 9.]] # Use the index of the maximum value by topk op # get the value of the element of the corresponding index in other tensors top_value, top_index = fluid.layers.topk(x, k=2) out_z2 = paddle.index_sample(target, top_index) print(top_value.numpy()) #[[ 4. 3.] # [ 8. 7.] # [12. 11.]] print(top_index.numpy()) #[[3 2] # [3 2] # [3 2]] print(out_z2.numpy()) #[[ 400 300] # [ 800 700] # [1200 1100]] """ helper = LayerHelper("index_sample", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.index_sample') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'paddle.tensor.search.index_sample') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='index_sample', inputs={'X': x, 'Index': index}, outputs={'Out': out}) return out def masked_select(x, mask, name=None): """ This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask`` which is a tensor with data type of bool. Args: x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: A 1-D Tensor which is the same data type as ``x``. Raises: TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of float32, float64, int32 and int64. TypeError: ``mask`` must be a Tensor and the data type of ``mask`` must be bool. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() data = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]).astype('float32') mask_data = np.array([[True, False, False, False], [True, True, False, False], [True, False, False, False]]).astype('bool') x = paddle.to_tensor(data) mask = paddle.to_tensor(mask_data) out = paddle.masked_select(x, mask) #[1.0 5.0 6.0 9.0] """ if in_dygraph_mode(): return core.ops.masked_select(x, mask) helper = LayerHelper("masked_select", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.mask_select') check_variable_and_dtype(mask, 'mask', ['bool'], 'paddle.tensor.search.masked_select') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='masked_select', inputs={'X': x, 'Mask': mask}, outputs={'Y': out}) return out