# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.tests.unittests.op_test import OpTest, convert_uint16_to_float from paddle.fluid.framework import _test_eager_guard import paddle class TestGaussianRandomOp(OpTest): def setUp(self): self.op_type = "gaussian_random" self.python_api = paddle.normal self.set_attrs() self.inputs = {} self.use_mkldnn = False self.attrs = { "shape": [123, 92], "mean": self.mean, "std": self.std, "seed": 10, "use_mkldnn": self.use_mkldnn } paddle.seed(10) self.outputs = {'Out': np.zeros((123, 92), dtype='float32')} def set_attrs(self): self.mean = 1.0 self.std = 2. def test_check_output(self): self.check_output_customized(self.verify_output) def test_eager(self): with _test_eager_guard(): self.test_check_output() def verify_output(self, outs): self.assertEqual(outs[0].shape, (123, 92)) hist, _ = np.histogram(outs[0], range=(-3, 5)) hist = hist.astype("float32") hist /= float(outs[0].size) data = np.random.normal(size=(123, 92), loc=1, scale=2) hist2, _ = np.histogram(data, range=(-3, 5)) hist2 = hist2.astype("float32") hist2 /= float(outs[0].size) np.testing.assert_allclose(hist, hist2, rtol=0, atol=0.01) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestGaussianRandomBF16Op(OpTest): def setUp(self): self.op_type = "gaussian_random" self.python_api = paddle.normal self.set_attrs() self.inputs = {} self.use_mkldnn = False self.attrs = { "shape": [123, 92], "mean": self.mean, "std": self.std, "seed": 10, "dtype": paddle.fluid.core.VarDesc.VarType.BF16, "use_mkldnn": self.use_mkldnn } paddle.seed(10) self.outputs = {'Out': np.zeros((123, 92), dtype='float32')} def set_attrs(self): self.mean = 1.0 self.std = 2. def test_check_output(self): self.check_output_with_place_customized(self.verify_output, place=core.CUDAPlace(0)) def test_eager(self): with _test_eager_guard(): self.test_check_output() def verify_output(self, outs): outs = convert_uint16_to_float(outs) self.assertEqual(outs[0].shape, (123, 92)) hist, _ = np.histogram(outs[0], range=(-3, 5)) hist = hist.astype("float32") hist /= float(outs[0].size) data = np.random.normal(size=(123, 92), loc=1, scale=2) hist2, _ = np.histogram(data, range=(-3, 5)) hist2 = hist2.astype("float32") hist2 /= float(outs[0].size) np.testing.assert_allclose(hist, hist2, rtol=0, atol=0.05) class TestMeanStdAreInt(TestGaussianRandomOp): def set_attrs(self): self.mean = 1 self.std = 2 # Situation 2: Attr(shape) is a list(with tensor) class TestGaussianRandomOp_ShapeTensorList(TestGaussianRandomOp): def setUp(self): '''Test gaussian_random op with specified value ''' self.op_type = "gaussian_random" self.init_data() shape_tensor_list = [] for index, ele in enumerate(self.shape): shape_tensor_list.append(("x" + str(index), np.ones( (1)).astype('int32') * ele)) self.attrs = { 'shape': self.infer_shape, 'mean': self.mean, 'std': self.std, 'seed': self.seed, 'use_mkldnn': self.use_mkldnn } self.inputs = {"ShapeTensorList": shape_tensor_list} self.outputs = {'Out': np.zeros((123, 92), dtype='float32')} def init_data(self): self.shape = [123, 92] self.infer_shape = [-1, 92] self.use_mkldnn = False self.mean = 1.0 self.std = 2.0 self.seed = 10 def test_check_output(self): self.check_output_customized(self.verify_output) class TestGaussianRandomOp2_ShapeTensorList(TestGaussianRandomOp_ShapeTensorList ): def init_data(self): self.shape = [123, 92] self.infer_shape = [-1, -1] self.use_mkldnn = False self.mean = 1.0 self.std = 2.0 self.seed = 10 class TestGaussianRandomOp3_ShapeTensorList(TestGaussianRandomOp_ShapeTensorList ): def init_data(self): self.shape = [123, 92] self.infer_shape = [123, -1] self.use_mkldnn = True self.mean = 1.0 self.std = 2.0 self.seed = 10 class TestGaussianRandomOp4_ShapeTensorList(TestGaussianRandomOp_ShapeTensorList ): def init_data(self): self.shape = [123, 92] self.infer_shape = [123, -1] self.use_mkldnn = False self.mean = 1.0 self.std = 2.0 self.seed = 10 # Situation 3: shape is a tensor class TestGaussianRandomOp1_ShapeTensor(TestGaussianRandomOp): def setUp(self): '''Test gaussian_random op with specified value ''' self.op_type = "gaussian_random" self.init_data() self.use_mkldnn = False self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")} self.attrs = { 'mean': self.mean, 'std': self.std, 'seed': self.seed, 'use_mkldnn': self.use_mkldnn } self.outputs = {'Out': np.zeros((123, 92), dtype='float32')} def init_data(self): self.shape = [123, 92] self.use_mkldnn = False self.mean = 1.0 self.std = 2.0 self.seed = 10 # Test python API class TestGaussianRandomAPI(unittest.TestCase): def test_api(self): positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2000) positive_2_int64 = fluid.layers.fill_constant([1], "int64", 500) shape_tensor_int32 = fluid.data(name="shape_tensor_int32", shape=[2], dtype="int32") shape_tensor_int64 = fluid.data(name="shape_tensor_int64", shape=[2], dtype="int64") out_1 = fluid.layers.gaussian_random(shape=[2000, 500], dtype="float32", mean=0.0, std=1.0, seed=10) out_2 = fluid.layers.gaussian_random(shape=[2000, positive_2_int32], dtype="float32", mean=0., std=1.0, seed=10) out_3 = fluid.layers.gaussian_random(shape=[2000, positive_2_int64], dtype="float32", mean=0., std=1.0, seed=10) out_4 = fluid.layers.gaussian_random(shape=shape_tensor_int32, dtype="float32", mean=0., std=1.0, seed=10) out_5 = fluid.layers.gaussian_random(shape=shape_tensor_int64, dtype="float32", mean=0., std=1.0, seed=10) out_6 = fluid.layers.gaussian_random(shape=shape_tensor_int64, dtype=np.float32, mean=0., std=1.0, seed=10) exe = fluid.Executor(place=fluid.CPUPlace()) res_1, res_2, res_3, res_4, res_5, res_6 = exe.run( fluid.default_main_program(), feed={ "shape_tensor_int32": np.array([2000, 500]).astype("int32"), "shape_tensor_int64": np.array([2000, 500]).astype("int64"), }, fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6]) self.assertAlmostEqual(np.mean(res_1), 0.0, delta=0.1) self.assertAlmostEqual(np.std(res_1), 1., delta=0.1) self.assertAlmostEqual(np.mean(res_2), 0.0, delta=0.1) self.assertAlmostEqual(np.std(res_2), 1., delta=0.1) self.assertAlmostEqual(np.mean(res_3), 0.0, delta=0.1) self.assertAlmostEqual(np.std(res_3), 1., delta=0.1) self.assertAlmostEqual(np.mean(res_4), 0.0, delta=0.1) self.assertAlmostEqual(np.std(res_5), 1., delta=0.1) self.assertAlmostEqual(np.mean(res_5), 0.0, delta=0.1) self.assertAlmostEqual(np.std(res_5), 1., delta=0.1) self.assertAlmostEqual(np.mean(res_6), 0.0, delta=0.1) self.assertAlmostEqual(np.std(res_6), 1., delta=0.1) def test_default_dtype(self): paddle.disable_static() def test_default_fp16(): paddle.framework.set_default_dtype('float16') paddle.tensor.random.gaussian([2, 3]) self.assertRaises(TypeError, test_default_fp16) def test_default_fp32(): paddle.framework.set_default_dtype('float32') out = paddle.tensor.random.gaussian([2, 3]) self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32) def test_default_fp64(): paddle.framework.set_default_dtype('float64') out = paddle.tensor.random.gaussian([2, 3]) self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64) test_default_fp64() test_default_fp32() paddle.enable_static() class TestStandardNormalDtype(unittest.TestCase): def test_default_dtype(self): paddle.disable_static() def test_default_fp16(): paddle.framework.set_default_dtype('float16') paddle.tensor.random.standard_normal([2, 3]) self.assertRaises(TypeError, test_default_fp16) def test_default_fp32(): paddle.framework.set_default_dtype('float32') out = paddle.tensor.random.standard_normal([2, 3]) self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32) def test_default_fp64(): paddle.framework.set_default_dtype('float64') out = paddle.tensor.random.standard_normal([2, 3]) self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64) test_default_fp64() test_default_fp32() paddle.enable_static() class TestRandomValue(unittest.TestCase): def test_fixed_random_number(self): # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t' if not paddle.is_compiled_with_cuda(): return # Different GPU generatte different random value. Only test V100 here. if "V100" not in paddle.device.cuda.get_device_name(): return def _check_random_value(dtype, expect, expect_mean, expect_std): x = paddle.randn([32, 3, 1024, 1024], dtype=dtype) actual = x.numpy() np.testing.assert_allclose(actual[2, 1, 512, 1000:1010], expect, rtol=1e-05) self.assertTrue(np.mean(actual), expect_mean) self.assertTrue(np.std(actual), expect_std) print("Test Fixed Random number on V100 GPU------>") paddle.disable_static() paddle.set_device('gpu') paddle.seed(2021) expect = [ -0.79037829, -0.54411126, -0.32266671, 0.35791815, 1.44169267, -0.87785644, -1.23909874, -2.18194139, 0.49489656, 0.40703062 ] expect_mean = -0.0000053026194133403266873214888799115129813799285329878330230713 expect_std = 0.99999191058126390974081232343451119959354400634765625 _check_random_value(core.VarDesc.VarType.FP64, expect, expect_mean, expect_std) expect = [ -0.7988942, 1.8644791, 0.02782744, 1.3692524, 0.6419724, 0.12436751, 0.12058455, -1.9984808, 1.5635862, 0.18506318 ] expect_mean = -0.00004762359094456769526004791259765625 expect_std = 0.999975681304931640625 _check_random_value(core.VarDesc.VarType.FP32, expect, expect_mean, expect_std) paddle.enable_static() if __name__ == "__main__": unittest.main()