# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.tensor as tensor import paddle.fluid as fluid import numpy as np import unittest class TestClampAPI(unittest.TestCase): def test_clamp(self): data_shape = [1, 9, 9, 4] data = np.random.random(data_shape).astype('float32') images = fluid.data(name='image', shape=data_shape, dtype='float32') min = fluid.data(name='min', shape=[1], dtype='float32') max = fluid.data(name='max', shape=[1], dtype='float32') place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() exe = fluid.Executor(place) out_1 = tensor.clamp(images, min=min, max=max) out_2 = tensor.clamp(images, min=0.2, max=0.9) out_3 = tensor.clamp(images, min=0.3) out_4 = tensor.clamp(images, max=0.7) out_5 = tensor.clamp(images, min=min) out_6 = tensor.clamp(images, max=max) res1, res2, res3, res4, res5, res6 = exe.run( fluid.default_main_program(), feed={ "image": data, "min": np.array([0.2]).astype('float32'), "max": np.array([0.8]).astype('float32') }, fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6]) self.assertTrue(np.allclose(res1, data.clip(0.2, 0.8))) self.assertTrue(np.allclose(res2, data.clip(0.2, 0.9))) self.assertTrue(np.allclose(res3, data.clip(min=0.3))) self.assertTrue(np.allclose(res4, data.clip(max=0.7))) self.assertTrue(np.allclose(res5, data.clip(min=0.2))) self.assertTrue(np.allclose(res6, data.clip(max=0.8))) class TestClampError(unittest.TestCase): def test_errors(self): x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16") x2 = fluid.layers.data(name='x2', shape=[1], dtype="int8") self.assertRaises(TypeError, tensor.clamp, x=x1, min=0.2, max=0.8) self.assertRaises(TypeError, tensor.clamp, x=x2, min=0.2, max=0.8) if __name__ == '__main__': unittest.main()