/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "LayerGradUtil.h" #include "paddle/math/MathUtils.h" #include "paddle/testing/TestUtil.h" using namespace paddle; void setPoolConfig(TestConfig* config, PoolConfig* pool, const string& poolType) { (*config).biasSize = 0; (*config).layerConfig.set_type("pool"); (*config).layerConfig.set_num_filters(1); int kw = 3, kh = 3; int pw = 0, ph = 0; int sw = 2, sh = 2; pool->set_pool_type(poolType); pool->set_channels(1); pool->set_size_x(kw); pool->set_size_y(kh); pool->set_start(0); pool->set_padding(pw); pool->set_padding_y(ph); pool->set_stride(sw); pool->set_stride_y(sh); int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false); int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false); pool->set_output_x(ow); pool->set_output_y(oh); } void doOneMaxPoolingWithMaskOutputTest(MatrixPtr& inputMat, const string& poolType, bool use_gpu, MatrixPtr& maskMat) { TestConfig config; config.inputDefs.push_back({INPUT_DATA, "layer_0", 25, 0}); LayerInputConfig* input = config.layerConfig.add_inputs(); PoolConfig* pool = input->mutable_pool_conf(); pool->set_img_size(5); pool->set_img_size_y(5); setPoolConfig(&config, pool, poolType); config.layerConfig.set_size(pool->output_x() * pool->output_y() * pool->channels()); config.layerConfig.set_name("MaxPoolWithMask"); std::vector dataLayers; LayerMap layerMap; vector datas; initDataLayer(config, &dataLayers, &datas, &layerMap, "MaxPoolWithMask", 1, false, use_gpu); dataLayers[0]->getOutputValue()->copyFrom(*inputMat); FLAGS_use_gpu = use_gpu; std::vector parameters; LayerPtr maxPoolingWithMaskOutputLayer; initTestLayer(config, &layerMap, ¶meters, &maxPoolingWithMaskOutputLayer); maxPoolingWithMaskOutputLayer->forward(PASS_GC); checkMatrixEqual(maxPoolingWithMaskOutputLayer->getOutput("mask").value, maskMat); } TEST(Layer, maxPoolingWithMaskOutputLayerFwd) { bool useGpu = false; MatrixPtr inputMat; MatrixPtr maskMat; real inputData[] = {0.1, 0.1, 0.5, 0.5, 1.1, 0.2, 0.2, 0.6, 0.1, 0.1, 0.3, 0.3, 0.7, 0.1, 0.1, 0.4, 0.4, 0.8, 0.8, 0.1, 1.0, 2.0, 3.0, 0.0, 9.0}; real maskData[] = {12, 4, 22, 24}; inputMat = Matrix::create(1, 25, false, useGpu); maskMat = Matrix::create(1, 4, false, useGpu); inputMat->setData(inputData); maskMat->setData(maskData); doOneMaxPoolingWithMaskOutputTest( inputMat, "max-pool-with-mask", useGpu, maskMat); #ifdef PADDLE_WITH_CUDA useGpu = true; inputMat = Matrix::create(1, 25, false, useGpu); maskMat = Matrix::create(1, 4, false, useGpu); inputMat->copyFrom(inputData, 25); maskMat->copyFrom(maskData, 4); doOneMaxPoolingWithMaskOutputTest( inputMat, "max-pool-with-mask", useGpu, maskMat); #endif }