/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "FunctionTest.h" namespace paddle { template void forward(Compare2Function& test, const TensorShape& input, const TensorShape& filter, const TensorShape& output) { test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output)); test.run(); } template void backward_input(Compare2Function& test, const TensorShape& input, const TensorShape& filter, const TensorShape& output) { test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO); test.run(); } template void backward_filter(Compare2Function& test, const TensorShape& input, const TensorShape& filter, const TensorShape& output) { test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter), ADD_TO); test.run(); } template using Function = void (*)(Compare2Function& test, const TensorShape& input, const TensorShape& filter, const TensorShape& output); /** * \brief A basic convolution function test interface. * * \param conv1 type name of convolution function 1. * \param conv2 type name of convolution function 2. * \param function test function, can be one of the forward, backward_input * backward_filter function. * Example: * 1. Compare GemmConv's CPU and GPU implementation: * Convolution( * "GemmConv-CPU", "GemmConv-GPU", forward); */ template void Convolution(const std::string& conv1, const std::string& conv2, Function function) { for (size_t batchSize : {1, 5}) { for (size_t inputSize : {7, 14, 31}) { for (size_t filterSize : {1, 3, 5}) { for (size_t inputChannels : {3, 16}) { for (size_t outputChannels : {3, 16}) { if (outputChannels < inputChannels) continue; for (size_t stride : {1, 2}) { for (size_t padding : {0, 1}) { if (padding >= filterSize) break; size_t outputSize = (inputSize - filterSize + 2 * padding + stride) / stride; VLOG(3) << " batchSize=" << batchSize << " inputChannels=" << inputChannels << " inputHeight=" << inputSize << " inputWidth=" << inputSize << " outputChannels=" << outputChannels << " filterHeight=" << filterSize << " filterWidth=" << filterSize << " outputHeight=" << outputSize << " outputWidth=" << outputSize << " stride=" << stride << " padding=" << padding; std::vector paddings = {padding, padding}; std::vector strides = {stride, stride}; Compare2Function test( conv1, conv2, FuncConfig() .set("paddings", paddings) .set("strides", strides) .set("groups", (size_t)1) .set("algo", "auto")); TensorShape input{ batchSize, inputChannels, inputSize, inputSize}; TensorShape filter{ outputChannels, inputChannels, filterSize, filterSize}; TensorShape output{ batchSize, outputChannels, outputSize, outputSize}; function(test, input, filter, output); } } } } } } } } /** * \brief A convolution function test interface for * image height is not equal image width. */ template void Convolution2(const std::string& conv1, const std::string& conv2, Function function) { for (size_t batchSize : {4}) { for (size_t inputHeight : {7, 31}) { for (size_t inputWidth : {10, 54}) { for (size_t filterHeight : {1, 5}) { for (size_t filterWidth : {3, 7}) { for (size_t inputChannels : {7}) { for (size_t outputChannels : {7}) { size_t stride = 1; size_t padding = 0; size_t outputHeight = (inputHeight - filterHeight + 2 * padding + stride) / stride; size_t outputWidth = (inputWidth - filterWidth + 2 * padding + stride) / stride; VLOG(3) << " batchSize=" << batchSize << " inputChannels=" << inputChannels << " inputHeight=" << inputHeight << " inputWidth=" << inputWidth << " outputChannels=" << outputChannels << " filterHeight=" << filterHeight << " filterWidth=" << filterWidth << " outputHeight=" << outputHeight << " outputWidth=" << outputWidth << " stride=" << stride << " padding=" << padding; std::vector paddings = {padding, padding}; std::vector strides = {stride, stride}; Compare2Function test( conv1, conv2, FuncConfig() .set("paddings", paddings) .set("strides", strides) .set("groups", (size_t)1) .set("algo", "auto")); TensorShape input{ batchSize, inputChannels, inputHeight, inputWidth}; TensorShape filter{ outputChannels, inputChannels, filterHeight, filterWidth}; TensorShape output{ batchSize, outputChannels, outputHeight, outputWidth}; function(test, input, filter, output); } } } } } } } } /** * \brief A convolution function test interface for depthwise convolution. */ template void DepthwiseConvolution(const std::string& conv1, const std::string& conv2, Function function) { for (size_t batchSize : {1, 32}) { for (size_t inputSize : {7, 14, 54}) { for (size_t filterSize : {3, 4}) { for (size_t inputChannels : {32}) { for (size_t outputChannels : {32, 64}) { for (size_t stride : {1, 2}) { for (size_t padding : {0, 1}) { size_t outputSize = (inputSize - filterSize + 2 * padding + stride) / stride; VLOG(3) << " batchSize=" << batchSize << " inputChannels=" << inputChannels << " inputHeight=" << inputSize << " inputWidth=" << inputSize << " outputChannels=" << outputChannels << " filterHeight=" << filterSize << " filterWidth=" << filterSize << " outputHeight=" << outputSize << " outputWidth=" << outputSize << " stride=" << stride << " padding=" << padding; std::vector paddings = {padding, padding}; std::vector strides = {stride, stride}; size_t groups = inputChannels; Compare2Function test( conv1, conv2, FuncConfig() .set("paddings", paddings) .set("strides", strides) .set("groups", groups) .set("algo", "auto")); TensorShape input{ batchSize, inputChannels, inputSize, inputSize}; TensorShape filter{groups, outputChannels / groups, inputChannels / groups, filterSize, filterSize}; TensorShape output{ batchSize, outputChannels, outputSize, outputSize}; function(test, input, filter, output); } } } } } } } } } // namespace paddle