// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h" #include "paddle/fluid/distributed/collective/Common.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device/gpu/nccl_helper.h" #include "paddle/fluid/platform/place.h" #include "paddle/phi/api/include/api.h" #include "paddle/phi/common/place.h" DECLARE_bool(nccl_blocking_wait); DECLARE_bool(use_stream_safe_cuda_allocator); constexpr int64_t kWaitBlockTImeout = 10; namespace paddle { namespace distributed { void SyncDefaultStream( const std::vector& places, std::vector& ncclEvents, // NOLINT std::vector>& dev_ctx) { // NOLINT for (size_t i = 0; i < places.size(); ++i) { auto* default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(places[i])); ncclEvents[i].Record(*default_ctx); ncclEvents[i].Block(*dev_ctx[i]); } } std::shared_ptr ProcessGroupNCCL::CreateTask( std::vector places, int rank, CommType comm_type, const std::vector& inputs) { return std::make_shared( places, rank, comm_type, inputs); } ProcessGroupNCCL::NCCLTask::NCCLTask( const std::vector& places, int rank, CommType CommType, const std::vector& inputs) : Task(rank, inputs, CommType), places_(places) { control_events_.resize(places.size()); ncclComms_.resize(places.size()); } ProcessGroupNCCL::NCCLTask::~NCCLTask() {} void ProcessGroupNCCL::NCCLTask::SetOutputs( std::vector& outputs) { // NOLINT outputs_ = std::make_shared>(outputs); } void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() { for (size_t i = 0; i < places_.size(); ++i) { auto* default_ctx = static_cast( platform::DeviceContextPool::Instance().Get(places_[i])); default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent()); } } bool ProcessGroupNCCL::NCCLTask::IsCompleted() { for (size_t i = 0; i < places_.size(); ++i) { if (!control_events_[i].Query()) { return false; } } return true; } void ProcessGroupNCCL::CheckSplitSizes(std::vector* split_sizes, std::vector tensor_shape) { int64_t len_size = (*split_sizes).size(); if (len_size == 0) { PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0, true, platform::errors::InvalidArgument( "Tensor's dim[0] must be divisible by group size " "when split_sizes not given.")); (*split_sizes) .insert((*split_sizes).end(), size_, static_cast(tensor_shape[0] / size_)); } else { PADDLE_ENFORCE_EQ( len_size == size_, true, platform::errors::InvalidArgument( "The length of split_sizes must be equal to group size.")); auto sum_size = std::accumulate( (*split_sizes).begin(), (*split_sizes).end(), static_cast(0)); PADDLE_ENFORCE_EQ( sum_size == tensor_shape[0], true, platform::errors::InvalidArgument( "The sum of split_sizes must be equal to tensor's dim[0].")); } } // TODO(sheniang03): Add timeout for wait, now timeout unused bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) { SynchronizeStreams(); if (FLAGS_nccl_blocking_wait) { // NOTE(shenliang03): It will block host for sync while (!IsCompleted()) { std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout)); } } if (!barrierTensors_.empty()) { // If we use the work to do barrier, we should block cpu for (auto& place : places_) { platform::CUDADeviceGuard gpuGuard(place); #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize()); #else PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize()); #endif } } return true; } // Same as Wait void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); } ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr& store, int rank, int size, const platform::Place& place, int gid) : ProcessGroup(rank, size, place, gid), store_(store) { platform::SetDeviceId(place_.device); } void ProcessGroupNCCL::BroadcastUniqueNCCLID( std::vector& nccl_ids) { // NOLINT if (rank_ == 0) { for (size_t i = 0; i < nccl_ids.size(); i++) { auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" + std::to_string(i); auto nccl_id = std::vector( reinterpret_cast(&nccl_ids[i]), reinterpret_cast(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES); store_->set(key, nccl_id); } } else { for (size_t i = 0; i < nccl_ids.size(); i++) { auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" + std::to_string(i); auto ret = store_->get(key); std::memcpy(&nccl_ids[i], ret.data(), ret.size()); } } } // create NCCLManager cache for places_key void ProcessGroupNCCL::CreateNCCLManagerCache( const std::string& places_key, const std::vector& places) { PADDLE_ENFORCE_EQ(places_key.empty(), false, platform::errors::PreconditionNotMet( "Not able to create/get the NCCL Communicator since " "the GPU place are not known")); std::vector> nccl_comms; nccl_comms.resize(places.size()); // using vector just for broadcast std::vector nccl_ids; nccl_ids.resize(1); auto& nccl_id = nccl_ids.front(); for (auto& place : places) { used_place_ids_.insert(place.GetDeviceId()); } if (rank_ == 0) { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id)); } BroadcastUniqueNCCLID(nccl_ids); VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_ << ", place: " << places_key << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id); std::vector> dev_ctx; dev_ctx.resize(places.size()); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart()); for (size_t i = 0; i < places.size(); ++i) { platform::CUDADeviceGuard guard(places[i]); nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id); dev_ctx[i].reset(new phi::GPUContext(places[i])); } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); std::vector events; events.resize(places.size()); // These caches will be useful to process sync/wait/communicate places_to_events_.emplace(places_key, std::move(events)); places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms)); places_to_ctx_.emplace(places_key, std::move(dev_ctx)); } template std::shared_ptr ProcessGroupNCCL::Collective( std::vector& inputs, std::vector& outputs, Fn fn, CommType op_type) { const auto places = GetPlaceList(inputs); const auto key = GetKeyFromPlaces(places); { std::lock_guard lock(mutex_); if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) { CreateNCCLManagerCache(key, places); } } auto& nccl_comms = places_to_ncclcomm_[key]; SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]); auto task = CreateTask(places, rank_, op_type, inputs); // construct uninitialize guard for device platform::CUDADeviceGuard cuda_guard; { platform::NCCLGroupGuard nccl_guard; for (size_t i = 0; i < inputs.size(); ++i) { cuda_guard.SetDevice(places[i]); const auto& nccl_stream = places_to_ctx_[key][i]->stream(); fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream); } } if (FLAGS_use_stream_safe_cuda_allocator) { for (size_t i = 0; i < inputs.size(); ++i) { cuda_guard.SetDevice(places[i]); memory::RecordStream(inputs[i].Holder(), places_to_ctx_[key][i]->stream()); } } for (size_t i = 0; i < inputs.size(); ++i) { cuda_guard.SetDevice(places[i]); task->control_events_[i].Record(*places_to_ctx_[key][i]); } return task; } template void ProcessGroupNCCL::Collective(const phi::DenseTensor* in, phi::DenseTensor* out, Fn fn, CommType op_type) { std::vector places; places.push_back(in->place()); const auto key = GetKeyFromPlaces(places); { std::lock_guard lock(mutex_); if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) { CreateNCCLManagerCache(key, places); } } auto& nccl_comms = places_to_ncclcomm_[key]; SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]); // construct uninitialize guard for device platform::CUDADeviceGuard cuda_guard; if (FLAGS_use_stream_safe_cuda_allocator) { cuda_guard.SetDevice(places[0]); memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream()); } { platform::NCCLGroupGuard nccl_guard; cuda_guard.SetDevice(places[0]); const auto& nccl_stream = places_to_ctx_[key][0]->stream(); fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream); } cuda_guard.SetDevice(places[0]); } template std::shared_ptr ProcessGroupNCCL::PointToPoint( std::vector& tensors, Fn fn, int dst_rank, CommType op_type) { const auto places = GetPlaceList(tensors); const auto key = GetKeyFromPlaces(places); { std::lock_guard lock(mutex_); if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) { CreateNCCLManagerCache(key, places); } } auto& nccl_comms = places_to_ncclcomm_[key]; SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]); auto task = CreateTask(places, rank_, op_type, tensors); // construct uninitialize guard for device platform::CUDADeviceGuard cuda_guard; if (FLAGS_use_stream_safe_cuda_allocator) { for (size_t i = 0; i < tensors.size(); ++i) { cuda_guard.SetDevice(places[i]); memory::RecordStream(tensors[i].Holder(), places_to_ctx_[key][i]->stream()); } } { platform::NCCLGroupGuard nccl_guard; for (size_t i = 0; i < tensors.size(); ++i) { cuda_guard.SetDevice(places[i]); const auto& nccl_stream = places_to_ctx_[key][i]->stream(); fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank); } } for (size_t i = 0; i < tensors.size(); ++i) { cuda_guard.SetDevice(places[i]); task->control_events_[i].Record(*places_to_ctx_[key][i]); } return task; } std::shared_ptr ProcessGroupNCCL::AllReduce( std::vector& in_tensors, std::vector& out_tensors, const AllreduceOptions& opts) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](const phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { return platform::dynload::ncclAllReduce( input.data(), output.data(), input.numel(), platform::ToNCCLDataType(input.type()), ToNCCLRedType(opts.reduce_op), comm, stream); }, CommType::ALLREDUCE); } std::shared_ptr ProcessGroupNCCL::Broadcast( std::vector& in_tensors, std::vector& out_tensors, const BroadcastOptions& opts) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { const auto root = opts.source_rank * in_tensors.size() + opts.source_root; return platform::dynload::ncclBroadcast( input.data(), output.data(), input.numel(), platform::ToNCCLDataType(input.type()), root, comm, stream); }, CommType::BROADCAST); } std::shared_ptr ProcessGroupNCCL::Barrier( const BarrierOptions& opts) { // Only support single card single process std::vector places = {place_}; std::vector barrierTensors; barrierTensors.reserve(places.size()); platform::CUDADeviceGuard gpuGuard; for (auto& place : places) { gpuGuard.SetDeviceIndex(place.GetDeviceId()); auto dt = full({1}, 0, phi::DataType::FLOAT32, place); barrierTensors.push_back( *std::dynamic_pointer_cast(dt.impl())); } auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors); auto nccl_task = dynamic_cast(task.get()); nccl_task->barrierTensors_ = std::move(barrierTensors); return task; } void CheckTensorsInDifferentDevices( const std::vector& tensors, const size_t num_devices) { PADDLE_ENFORCE_EQ( tensors.size() == 0, false, platform::errors::InvalidArgument("Tensor list must be nonempty.")); PADDLE_ENFORCE_LE( tensors.size(), num_devices, platform::errors::InvalidArgument( "Tensor list mustn't be larger than the number of available GPUs.")); std::set used_devices; for (const auto& t : tensors) { PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()), true, platform::errors::InvalidArgument( "Tensors must be CUDA and dense tensor.")); const auto inserted = used_devices.insert(t.place()).second; PADDLE_ENFORCE_EQ(inserted, true, platform::errors::InvalidArgument( "Tensors must be on distinct GPU devices.")); } } std::shared_ptr ProcessGroupNCCL::Send( std::vector& tensors, int dst_rank) { CheckTensorsInDifferentDevices(tensors, static_cast(GetSize())); auto task = PointToPoint( tensors, [&](phi::DenseTensor& input, ncclComm_t comm, const gpuStream_t& stream, int dst_rank) { return platform::dynload::ncclSend( input.data(), input.numel(), platform::ToNCCLDataType(input.dtype()), dst_rank, comm, stream); }, dst_rank, CommType::SEND); return task; } std::shared_ptr ProcessGroupNCCL::Recv( std::vector& tensors, int src_rank) { CheckTensorsInDifferentDevices(tensors, static_cast(GetSize())); auto task = PointToPoint( tensors, [&](phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream, int src_rank) { return platform::dynload::ncclRecv( output.data(), output.numel(), platform::ToNCCLDataType(output.dtype()), src_rank, comm, stream); }, src_rank, CommType::RECV); return task; } std::shared_ptr ProcessGroupNCCL::Send_Partial( phi::DenseTensor& tensors, int dst_rank, int offset, int length) { // CheckTensorsInDifferentDevices(tensors, static_cast(GetSize())); phi::DenseTensor flatten_tensor; flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()}); phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length); std::vector shared_tensors; shared_tensors.push_back(shared_input); auto task = PointToPoint( shared_tensors, [&](phi::DenseTensor& input, ncclComm_t comm, const gpuStream_t& stream, int dst_rank) { return platform::dynload::ncclSend( input.data(), input.numel(), platform::ToNCCLDataType(input.dtype()), dst_rank, comm, stream); }, dst_rank, CommType::SEND); return task; } std::shared_ptr ProcessGroupNCCL::Recv_Partial( phi::DenseTensor& tensors, int src_rank, int offset, int length) { // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length); phi::DenseTensor flatten_tensor; flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()}); phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length); std::vector shared_tensors; shared_tensors.push_back(shared_input); auto task = PointToPoint( shared_tensors, [&](phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream, int src_rank) { return platform::dynload::ncclRecv( output.data(), output.numel(), platform::ToNCCLDataType(output.dtype()), src_rank, comm, stream); }, src_rank, CommType::RECV); return task; } std::shared_ptr ProcessGroupNCCL::AllGather( std::vector& in_tensors, std::vector& out_tensors) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(out_tensors), true, platform::errors::InvalidArgument("All outputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](const phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { return platform::dynload::ncclAllGather( input.data(), output.data(), input.numel(), platform::ToNCCLDataType(input.dtype()), comm, stream); }, CommType::ALLGATHER); } void* GetPointerByOffset(void* raw_pointer, size_t offset, experimental::DataType type) { if (type == experimental::DataType::FLOAT32) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::FLOAT64) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::INT32) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::INT64) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else if (type == experimental::DataType::FLOAT16) { return reinterpret_cast(reinterpret_cast(raw_pointer) + offset); } else { PADDLE_THROW(platform::errors::Unimplemented( "This datatype in nccl is not supported.")); } return nullptr; } std::shared_ptr ProcessGroupNCCL::AllGather_Partial( std::vector& in_tensors, std::vector& out_tensors, int offset, int length) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(out_tensors), true, platform::errors::InvalidArgument("All outputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { return platform::dynload::ncclAllGather( GetPointerByOffset(input.data(), offset, input.dtype()), output.data(), length, platform::ToNCCLDataType(input.dtype()), comm, stream); }, CommType::ALLGATHER); } std::shared_ptr ProcessGroupNCCL::AllToAll( std::vector& in_tensors, std::vector& out_tensors) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(out_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { size_t offset = 0; PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart()); for (auto i = 0; i < size_; i++) { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend( GetPointerByOffset(input.data(), offset, input.dtype()), input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i, comm, stream)); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( GetPointerByOffset(output.data(), offset, input.dtype()), input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i, comm, stream)); offset += input.numel() / size_; } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); }, CommType::ALLTOALL); } std::shared_ptr ProcessGroupNCCL::AllToAll_Single( std::vector& in_tensors, std::vector& out_tensors, std::vector& in_sizes, std::vector& out_sizes) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(out_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(), true, platform::errors::InvalidArgument( "The dtypes of input and output must be equal.")); std::vector in_dims = phi::vectorize(input.dims()); std::vector out_dims = phi::vectorize(output.dims()); CheckSplitSizes(&in_sizes, in_dims); CheckSplitSizes(&out_sizes, out_dims); size_t in_offset = 0, out_offset = 0; size_t in_length = 0, out_length = 0; size_t in_row_size = input.numel() / in_dims[0]; size_t out_row_size = output.numel() / out_dims[0]; PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart()); for (auto i = 0; i < size_; i++) { in_length = in_sizes[i] * in_row_size; PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend( GetPointerByOffset(input.data(), in_offset, input.dtype()), in_length, platform::ToNCCLDataType(input.dtype()), i, comm, stream)); in_offset += in_length; out_length = out_sizes[i] * out_row_size; PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( GetPointerByOffset(output.data(), out_offset, input.dtype()), out_length, platform::ToNCCLDataType(input.dtype()), i, comm, stream)); out_offset += out_length; } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); }, CommType::ALLTOALL_SINGLE); } std::shared_ptr ProcessGroupNCCL::Reduce( std::vector& in_tensors, std::vector& out_tensors, const ReduceOptions& opts) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](const phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce( input.data(), output.data(), input.numel(), platform::ToNCCLDataType(input.dtype()), ToNCCLRedType(opts.reduce_op), opts.root_rank, comm, stream)); }, CommType::REDUCE); } std::shared_ptr ProcessGroupNCCL::Scatter( std::vector& in_tensors, std::vector& out_tensors, const ScatterOptions& opts) { PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(in_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); PADDLE_ENFORCE_EQ( CheckTensorsInCudaPlace(out_tensors), true, platform::errors::InvalidArgument("All inputs should be in CudaPlace.")); return Collective( in_tensors, out_tensors, [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { size_t offset = 0; if (rank_ == opts.root_rank) { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart()); for (auto i = 0; i < size_; i++) { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend( GetPointerByOffset(input.data(), offset, input.dtype()), input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i, comm, stream)); offset += input.numel() / size_; } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( output.data(), input.numel() / size_, platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm, stream)); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); } else { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( output.data(), input.numel() / size_, platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm, stream)); } }, CommType::SCATTER); } std::shared_ptr ProcessGroupNCCL::_ReduceScatterBase( phi::DenseTensor& out_tensor, phi::DenseTensor& in_tensor, const ReduceScatterOptions& opts) { // auto tensor = out_tensors.back(); PADDLE_ENFORCE_EQ( out_tensor.dtype(), in_tensor.dtype(), platform::errors::InvalidArgument( "Input tensor and output tensor should be same dtype.")); PADDLE_ENFORCE_EQ( out_tensor.numel() * size_, in_tensor.numel(), platform::errors::InvalidArgument("input tensor must be the same size as " "output tensor size times world_size")); auto inputs = std::vector{in_tensor}; auto outputs = std::vector{out_tensor}; return Collective( inputs, outputs, [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm, const gpuStream_t& stream) { if (FLAGS_use_stream_safe_cuda_allocator) { platform::CUDADeviceGuard cuda_guard; cuda_guard.SetDevice(output.place()); memory::RecordStream(output.Holder(), stream); } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter( input.data(), output.data(), output.numel(), platform::ToNCCLDataType(input.dtype()), ToNCCLRedType(opts.reduce_op), comm, stream)); }, CommType::REDUCE_SCATTER); } void ProcessGroupNCCL::GroupStart() { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart()); } void ProcessGroupNCCL::GroupEnd() { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); } } // namespace distributed } // namespace paddle