# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import six import paddle.fluid as fluid from paddle.fluid import Program, program_guard from op_test import OpTest, skip_check_grad_ci class TestPReluAPIError(unittest.TestCase): def test_errors(self): with fluid.program_guard(fluid.Program(), fluid.Program()): layer = fluid.PRelu( mode='all', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(1.0))) # the input must be Variable. x0 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) self.assertRaises(TypeError, layer, x0) # the input dtype must be float32 data_t = fluid.data( name="input", shape=[5, 200, 100, 100], dtype="float64") self.assertRaises(TypeError, layer, data_t) class PReluTest(OpTest): def setUp(self): self.init_input_shape() self.init_attr() self.op_type = "prelu" x_np = np.random.uniform(-1, 1, self.x_shape) # Since zero point in prelu is not differentiable, avoid randomize # zero. x_np[np.abs(x_np) < 0.005] = 0.02 if self.attrs == {'mode': "all"}: alpha_np = np.random.uniform(-1, -0.5, (1)) elif self.attrs == {'mode': "channel"}: alpha_np = np.random.uniform(-1, -0.5, (1, x_np.shape[1], 1, 1)) else: alpha_np = np.random.uniform(-1, -0.5, \ (1, x_np.shape[1], x_np.shape[2], x_np.shape[3])) self.inputs = {'X': x_np, 'Alpha': alpha_np} out_np = np.maximum(self.inputs['X'], 0.) out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.inputs['Alpha'] assert out_np is not self.inputs['X'] self.outputs = {'Out': out_np} def init_input_shape(self): self.x_shape = (2, 100, 3, 4) def init_attr(self): self.attrs = {'mode': "channel"} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'Alpha'], 'Out') # TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues if six.PY2: @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAll(PReluTest): def init_input_shape(self): self.x_shape = (2, 3, 4, 5) def init_attr(self): self.attrs = {'mode': "all"} class TestModeElt(PReluTest): def init_input_shape(self): self.x_shape = (3, 2, 5, 10) def init_attr(self): self.attrs = {'mode': "element"} class TestPReluOpError(unittest.TestCase): def test_errors(self): with program_guard(Program()): # The input type must be Variable. self.assertRaises(TypeError, fluid.layers.prelu, 1, 'all') # The input dtype must be float16, float32, float64. x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32') self.assertRaises(TypeError, fluid.layers.prelu, x_int32, 'all') # support the input dtype is float32 x_fp16 = fluid.layers.data( name='x_fp16', shape=[12, 10], dtype='float32') fluid.layers.prelu(x_fp16, 'all') if __name__ == "__main__": unittest.main()