# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator import contextlib import numpy as np from paddle.fluid import core from paddle.fluid import framework from .tracer import Tracer __all__ = [ 'enabled', 'no_grad', 'guard', 'to_variable', ] def enabled(): return framework.in_dygraph_mode() @contextlib.contextmanager def _switch_tracer_mode_guard_(is_train=True): tracer = framework._dygraph_tracer() if tracer: mode = tracer._train_mode tracer._train_mode = is_train yield tracer._train_mode = mode else: yield def _no_grad_(func): def __impl__(*args, **kwargs): with _switch_tracer_mode_guard_(is_train=False): return func(*args, **kwargs) return __impl__ no_grad = wrap_decorator(_no_grad_) @signature_safe_contextmanager def guard(place=None): train = framework.Program() startup = framework.Program() tracer = Tracer(train.current_block().desc) if place is None: if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() with framework.program_guard(train, startup): with framework.unique_name.guard(): with framework._dygraph_guard(tracer): with framework._dygraph_place_guard(place): yield def to_variable(value, block=None, name=None): if isinstance(value, np.ndarray): assert enabled(), "to_variable could only be called in dygraph mode" if not block: block = framework.default_main_program().current_block() py_var = framework.Variable( block, type=core.VarDesc.VarType.LOD_TENSOR, name=name, shape=value.shape, dtype=value.dtype, stop_gradient=True) var = py_var._ivar.value() tensor = var.get_tensor() tensor.set(value, framework._current_expected_place()) return py_var elif isinstance(value, framework.Variable): return value else: raise TypeError( "to_variable only accepts 'ndarray' and 'Variable' as value's input")