# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function __all__ = [ 'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker', 'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker' ] import os class Role: WORKER = 1 SERVER = 2 class RoleMakerBase(object): """ RoleMakerBase is a base class for assigning a role to current process in distributed training. A paddle developer can implement RoleMakerBase to design a role maker for worker or pserver assignment. """ def __init__(self): self._worker_endpoints = [] self._server_endpoints = [] self._role_is_generated = False self._role = None self._current_id = -1 def is_worker(self): """ return is_worker() of current process """ raise NotImplementedError("Please implement this method in child class") def is_server(self): """ return is_server() of current process """ raise NotImplementedError("Please implement this method in child class") def is_first_worker(self): """ Check whether the node is the first instance of worker. Returns: bool: True if this is the first node of worker, False if not. """ raise NotImplementedError("Please implement this method in child class") def worker_num(self): """ Get current total worker number. Returns: int: worker number """ raise NotImplementedError("Please implement this method in child class") def worker_index(self): """ Get current worker id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def server_index(self): """ Get current server id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def get_trainer_endpoints(self): """ return trainer endpoints """ return self._worker_endpoints def get_pserver_endpoints(self): """ return pserver endpoints """ return self._server_endpoints def to_string(self): return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format( self._role, self._current_id, self._worker_endpoints, self._server_endpoints) class MPIRoleMaker(RoleMakerBase): """ MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker mpi4py will be used if a developer inherits MPIRoleMaker """ def __init__(self): super(MPIRoleMaker, self).__init__() from mpi4py import MPI self.MPI = MPI self._comm = MPI.COMM_WORLD self._node_type_comm = None self._ips = None self._ip = None def _get_rank(self): """ return rank """ self._rank = self._comm.Get_rank() return self._rank def _get_size(self): """ return size """ self._size = self._comm.Get_size() return self._size def _all_gather(self, obj): """ all_gather(obj) will call MPI's allgather function """ self._barrier_all() return self._comm.allgather(obj) def _worker_gather(self, obj): """ worker_gather(obj) will call MPI's allgather function """ if self.is_worker(): self._node_type_comm.barrier() return self._node_type_comm.allgather(obj) return None def _barrier_all(self): """ barrier_all() will call MPI's barrier_all function """ self._comm.barrier() def _finalize(self): """ finalize the current MPI instance. """ self.MPI.Finalize() def _get_ips(self): """ collect current distributed job's ip list """ if not self._ips: self._ips = self._comm.allgather(self.get_local_ip()) return self._ips def get_local_ip(self): """ return get local ip """ import socket self._ip = socket.gethostbyname(socket.gethostname()) return self._ip def generate_role(self): """ generate_role() should be called to identify current process's role """ raise NotImplementedError("Please implement this method in child class") class MPISymetricRoleMaker(MPIRoleMaker): """ MPISymetricRoleMaker is designed for worker and server assignment under MPI. Typically, a worker and a server node will be appointed on each physical node. This role maker can be only used under MPI. """ def __init__(self): super(MPISymetricRoleMaker, self).__init__() self._node_type = None self._proc_per_node = 2 self._pserver_rand_port = 0 def _check_role_generation(self): if not self._role_is_generated: raise NameError("generate_role() should be called first") return True def is_first_worker(self): """ return whether current process is the first worker assigned by role maker """ if self._check_role_generation(): return self.is_worker() and 0 == self.worker_index() return False def get_pserver_endpoints(self): if self._pserver_rand_port <= 0: import random random.seed(self._server_num()) # port will be randomly generated from 60001 to 63999 # random seed is server num so that all nodes will get # the same port self._pserver_rand_port = random.randint(60001, 64000) endpoints = [ x + ":" + str(self._pserver_rand_port) for x in self._server_endpoints ] return endpoints def worker_num(self): return self._worker_num() def is_worker(self): """ return whether current process is worker assigned by role maker """ if self._check_role_generation(): return self._node_type == 1 return False def is_server(self): """ return whether current process is server assigned by role maker """ if self._check_role_generation(): return self._node_type == 0 return False def _worker_num(self): """ return the current number of worker """ if self._check_role_generation(): if self.is_worker(): return self._get_size() / self._proc_per_node return 0 def _server_num(self): """ return the current number of server """ if self._check_role_generation(): return self._get_size() / self._proc_per_node else: self.generate_role() return self._get_size() / self._proc_per_node def worker_index(self): """ return the index of worker """ if self._check_role_generation(): return self._rank / self._proc_per_node else: self.generate_role() return self._get_size() / 2 def server_index(self): """ return the index of server """ if self._check_role_generation(): return self._rank / self._proc_per_node else: self.generate_role() return self._get_size() / self._proc_per_node def _barrier_worker(self): """ barrier all workers in current distributed job """ if self._check_role_generation(): if self.is_worker(): self._node_type_comm.barrier() else: raise Exception("You should check role generation first") def _barrier_server(self): """ barrier all servers in current distributed job """ if self._check_role_generation(): if self.is_server(): self._node_type_comm.barrier() else: raise Exception("You should check role generation first") def generate_role(self): """ generate currently process's role """ if not self._role_is_generated: # TODO(guru4elephant): only allow to be called once self._worker_endpoints = self._get_ips()[1::2] self._server_endpoints = self._get_ips()[::2] if 0 == self._get_rank() % self._proc_per_node % 2: self._node_type = 0 else: self._node_type = 1 self._node_type_comm = self._comm.Split(self._node_type) self._role_is_generated = True else: raise Exception("You should check role generation first") class PaddleCloudRoleMaker(RoleMakerBase): def __init__(self, is_collective=False): super(PaddleCloudRoleMaker, self).__init__() self._role_is_generated = False self._is_collective = is_collective def generate_role(self): if not self._role_is_generated: if not self._is_collective: try: # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set # format: string(ip:port), eg. 127.0.0.1:6001 eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split( ",") # note that, we usually assign the same port to different ips # if we run parameter server training in local mode # port should be different in environment variables trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"]) training_role = os.environ["TRAINING_ROLE"] if training_role not in ["TRAINER", "PSERVER"]: raise ValueError( "TRAINING_ROLE must be PSERVER or TRAINER") if training_role == "TRAINER": role = Role.WORKER current_id = int(os.environ["PADDLE_TRAINER_ID"]) elif training_role == "PSERVER": role = Role.SERVER cur_ip = os.environ["POD_IP"] curr_port = os.environ["PADDLE_PORT"] curr_endpoint = ":".join([cur_ip, curr_port]) current_id = eplist.index(curr_endpoint) else: raise ValueError( "TRAINING_ROLE must be PSERVER or TRAINER") except ValueError as ve: raise ValueError( "something wrong with PaddleCloud, please check environment" ) self._trainers_num = trainers_num self._server_endpoints = eplist self._role = role self._current_id = current_id else: self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER") assert (self._training_role == "TRAINER") self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS") self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS" self._worker_endpoints = self._worker_endpoints.split(",") self._trainers_num = len(self._worker_endpoints) self._role_is_generated = True def get_pserver_endpoints(self): if not self._role_is_generated: self.generate_role() return self._server_endpoints def is_worker(self): if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER def is_server(self): if not self._role_is_generated: self.generate_role() return self._role == Role.SERVER def is_first_worker(self): if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): if not self._role_is_generated: self.generate_role() return self._current_id def server_index(self): if not self._role_is_generated: self.generate_role() return self._current_id def worker_num(self): if not self._role_is_generated: self.generate_role() return self._trainers_num class UserDefinedRoleMaker(RoleMakerBase): def __init__(self, current_id=0, role=Role.WORKER, worker_num=0, server_endpoints=None): """ UserDefinedRoleMaker is designed for worker and server assignment under manual. Typically, a worker and a server node will be appointed on each physical node, It can be assign by user. """ super(UserDefinedRoleMaker, self).__init__() if not isinstance(server_endpoints, list): raise TypeError("server_endpoints must be as string list") elif len(server_endpoints) <= 0: raise ValueError( "the length of server_endpoints list must be greater than 0") elif len(server_endpoints) != len(set(server_endpoints)): raise ValueError("server_endpoints can't have duplicate elements") else: for server_endpoint in server_endpoints: if not isinstance(server_endpoint, str): raise TypeError( "every element in server_endpoints list must be as string" ) self._server_endpoints = server_endpoints if role != Role.WORKER and role != Role.SERVER: raise TypeError("role must be as Role") else: self._role = role if not isinstance(current_id, int): raise TypeError("current_id must be as int") else: if current_id < 0: raise ValueError( "current_id must be greater than or equal to 0") elif self._role == Role.SERVER and current_id >= len( server_endpoints): raise ValueError( "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1" ) self._current_id = current_id if not isinstance(worker_num, int): raise TypeError("worker_num must be as int") else: if worker_num <= 0: raise ValueError("worker_num must be greater than 0") self._worker_num = worker_num def generate_role(self): self._role_is_generated = True def is_worker(self): return self._role == Role.WORKER def is_server(self): return self._role == Role.SERVER def is_first_worker(self): return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): return self._current_id def server_index(self): return self._current_id def worker_num(self): return self._worker_num class UserDefinedCollectiveRoleMaker(RoleMakerBase): def __init__(self, current_id=0, worker_endpoints=None): """ UserDefinedCollectiveRoleMaker is designed for worker assignment under manual for collective mode. """ super(UserDefinedCollectiveRoleMaker, self).__init__() if not isinstance(worker_endpoints, list): raise TypeError("worker_endpoints must be as string list") elif len(worker_endpoints) <= 0: raise ValueError( "the length of worker_endpoints list must be greater than 0") elif len(worker_endpoints) != len(set(worker_endpoints)): raise ValueError("worker_endpoints can't have duplicate elements") else: for worker_endpoint in worker_endpoints: if not isinstance(worker_endpoint, str): raise TypeError( "every element in worker_endpoints list must be as string" ) self._worker_endpoints = worker_endpoints if not isinstance(current_id, int): raise TypeError("current_id must be as int") else: if current_id < 0: raise ValueError( "current_id must be greater than or equal to 0") elif current_id >= len(worker_endpoints): raise ValueError( "current_id must be less than or equal to len(worker_endpoints) - 1" ) self._current_id = current_id self._worker_num = len(self._worker_endpoints) def generate_role(self): self._role_is_generated = True def is_worker(self): return True def is_first_worker(self): return self._current_id == 0 def worker_index(self): return self._current_id def worker_num(self): return self._worker_num