// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/gaussian_random_kernel.h" #include #include #include #include #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/distribution_helper.h" #include "paddle/phi/kernels/funcs/index_impl.cu.h" #include "paddle/fluid/framework/generator.h" DECLARE_bool(use_curand); namespace phi { template struct GaussianGenerator { T mean_, std_; unsigned int seed_; unsigned int offset_ = 0; __host__ __device__ GaussianGenerator(T mean, T std, int seed) : mean_(mean), std_(std), seed_(seed) {} __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset) : mean_(mean), std_(std), seed_(seed), offset_(offset) {} __host__ __device__ T operator()(const unsigned int n) const { thrust::minstd_rand rng; rng.seed(seed_); using MT = typename phi::kps::details::MPTypeTrait::Type; thrust::normal_distribution dist(mean_, std_); unsigned int new_n = n + offset_; rng.discard(new_n); MT out = dist(rng); return static_cast(out); } }; template void GaussianRandomKernel(const Context& dev_ctx, const ScalarArray& shape, float mean, float std, int seed, DataType dtype, DenseTensor* out) { auto tensor = out; bool seed_flag = false; if (seed == 0) { std::random_device rd; seed = rd(); seed_flag = true; } tensor->Resize(phi::make_ddim(shape.GetData())); T* data = dev_ctx.template Alloc(tensor); int64_t size = tensor->numel(); int device_id = dev_ctx.GetPlace().GetDeviceId(); auto gen_cuda = paddle::framework::GetDefaultCUDAGenerator(device_id); using MT = typename phi::kps::details::MPTypeTrait::Type; if (gen_cuda->GetIsInitPy() && seed_flag) { if (FLAGS_use_curand) { funcs::normal_distribution dist; funcs::normal_transform trans(mean, std); funcs::distribution_and_transform(dev_ctx, tensor, dist, trans); } else { auto seed_offset = gen_cuda->IncrementOffset(1); int64_t gen_offset = size * seed_offset.second; auto func = GaussianGenerator(mean, std, seed_offset.first, gen_offset); IndexKernel>(dev_ctx, tensor, func); } } else { auto func = GaussianGenerator(mean, std, seed); IndexKernel>(dev_ctx, tensor, func); } } } // namespace phi PD_REGISTER_KERNEL(gaussian_random, GPU, ALL_LAYOUT, phi::GaussianRandomKernel, phi::dtype::float16, float, double) {}