- 27 10月, 2021 5 次提交
-
-
由 baoachun 提交于
-
由 huangjun12 提交于
-
由 whs 提交于
-
由 Guoxia Wang 提交于
* fix BatchNorm for fp16
-
由 Li Min 提交于
功能:本PR的目标是提高attention模块的计算性能。 为了减少框架层对op的调度开销,本PR通过在C++层手动实现attention模块,对外提供attention 大op; 为了减少防存开销,本PR采取了两种优化方法: (1)在q,k,v计算时通过共享输入X,将该处的gemm,transpose和bias add从三次调用减少为一次; (2)使用kernel融合优化技术,在不同cuda kernel之间通过寄存器传输数据;
-
- 26 10月, 2021 18 次提交
-
-
由 Wilber 提交于
-
由 baoachun 提交于
* fix wrong trt dim when input dim is 2 * update leaky_relu and instance_norm converter unit test * add instance_norm input dim check
-
由 Wangzheee 提交于
[Paddle-Inference]Add MatmulV2ToMatmul convert Pass, fix (matmul_v2, matmul, mul) convert pass, fix (matmul, mul) op_teller (#36652) (#36737)
-
由 Steffy-zxf 提交于
* Add FasterTokenizer Operator (#34491) Add Tokenizer related functionalities for Transformer model in order that the process of training and predicting is consistent. * support the text string as an input Tensor * support the "VOCAB"unordered_map<wstring, int> as an input Tensor to lookup tokens * Tokenizer used for BERT. This tokenizer applies an end-to-end, text string to wordpiece tokenization. * It first applies basic tokenization, followed by wordpiece tokenization. * optimize fast tokenizer * remove const_cast Co-authored-by: Nzhoushunjie <zhoushunjie@baidu.com> Co-authored-by: Nwawltor <fangzeyang0904@hotmail.com>
-
由 zhangkaihuo 提交于
* add op: fused_feedforward(backward) (#35611) 这个PR是fused_feedforward反向的代码 相关kernel实现:fused_dropout_act_bias, fused_residual_dropout_bias, fused_layernorm_residual_dropout_bias fused_feedforward是一个融合算子,该算子对transformer模型的feed forward层的算子进行融合和封装,使得前端只呈现一个接口,通过融合减少部分访存和kernel launch的时间,以此提升性能。 * Move fused_attention and fused_feedforward functional api path to incubate (#36704) 将 #35905 和 #35843 PR中新增的的python api接口移到incubate目录下。
-
由 Haohongxiang 提交于
* fix bugs in HybridParallelClipGrad of hybrid_parallel_optimizer (#36237) * fix bugs in HybridParallelClipGrad of hybrid_parallel_optimizer * update * update * fix bugs in mp_layers、pp_layers and HybridParallelClipGrad (#36144) * fix calling bug of HybridParallelClipGrad * fix bugs of HybridParallelClipGrad * add unittest of pp with HybridParallelClipGrad * fix bugs in mp_layers.py * update * fix bugs in pp_layers.py * update * [HybridParallel]Rebuild code for pipeline (#36396) * add no_sync for parameters sync * add pipeline for moe * [HybridParallel]Support fp16 in dygraph hybrid parallel (#36420) * [HybridParallel]Support fp16 in dygraph hybrid parallel * update * update * update for recompute * add unittest of pp+fp16 * add unittest of recompute+fp16 * update * modify ut * modify ut of cond (#36475) * fix bugs of ClipGradByGlobalNorm in HybridParallel (#36555) * fix bugs of ClipGradByGlobalNorm * add unittests * add unittests * [HybridParallel]fix bug of check_inf in fleet_base.py (#36651) * fix bug of check_inf * fix allreduce * support ClipGradByGlobalNorm in sharding (#36012) * support ClipGradByGlobalNorm in sharding * support ClipGradByGlobalNorm in sharding * test=allcase * Update test_linalg_cond.py * Update hybrid_parallel_util.py * Update hybrid_parallel_util.py Co-authored-by: NShenLiang <1422485404@qq.com> Co-authored-by: Nzhaoyingli <86812880+zhaoyinglia@users.noreply.github.com>
-
由 zhangkaihuo 提交于
This is a fusion operator to compute feed forward layer in transformer model architecture.
-
由 feng_shuai 提交于
-
由 smallv0221 提交于
* Add bincount op * upload cpu version * fix unitest * fix unittest * fix unittest * fix en doc * add more test * fix en doc * add more test case * fix test * fix input vailidation * fix input check * fix unittest * fix test * fix en doc cherry-pick
-
由 Yulong Ao 提交于
-
由 xiongkun 提交于
Support various length support for SelectedRows in GLOO::AllGather (#36637) In cpu parallel using gloo, add various length support for SelectedRows
-
由 Leo Chen 提交于
* refine amp level * fix typo * update tracer._amp_level
-
由 yaoxuefeng 提交于
* add slotrecord datafeed (#36099) * fix multi-node (#36329)
-
由 HydrogenSulfate 提交于
-
由 Li Min 提交于
功能:本PR的目标是提高attention模块的计算性能。 为了减少框架层对op的调度开销,本PR通过在C++层手动实现attention模块,对外提供attention 大op; 为了减少防存开销,本PR采取了两种优化方法: (1)在q,k,v计算时通过共享输入X,将该处的gemm,transpose和bias add从三次调用减少为一次; (2)使用kernel融合优化技术,在不同cuda kernel之间通过寄存器传输数据;
-
由 yaoxuefeng 提交于
-
由 xiongkun 提交于
[cherry-pick] Support CPU Parallel in DataParallel Interface by GLOO to speed up training (#35745) (#36605) * User specified backend (#35745) * remove tensordot
-
由 feng_shuai 提交于
-
- 25 10月, 2021 17 次提交
-
-
由 WangXi 提交于
* Revert "Add fused_dropout wrapper to ease use. (#36185) (#36640)" This reverts commit 05d7e2fd. * [hybrid] seed and dropout op support force-cpu (#35820) * [HIP] fix op not support AMD GPU bug, the flag PADDLE_WITH_ROCM is invalid * [HIP] fix op not support AMD GPU bug, the flag PADDLE_WITH_ROCM is invalid * [HIP] fix op not support AMD GPU bug * [hybrid] seed and dropout op support force-cpu * [hybrid] seed and dropout op support force-cpu * [hybrid] seed and dropout op support force-cpu * [hybrid] seed and dropout op support force-cpu * [hybrid] seed and dropout op support force-cpu * [hybrid] fix seed ci failed issue * add AsExtra for force_cpu of seed op * Add fused_dropout wrapper to ease use. (#36185) * [hybrid] static model parallel dropout support deterministic RandomSeedGenerator (#36228) Co-authored-by: Nxiayanming <41795079@qq.com> Co-authored-by: NLi Min <11663212+limin2021@users.noreply.github.com>
-
由 whs 提交于
* Fix grid sampler * Fix code format
-
由 Zeng Jinle 提交于
-
由 baoachun 提交于
-
由 baoachun 提交于
-
由 Wilber 提交于
-
由 Wilber 提交于
-
由 Wilber 提交于
cherry-pick prs #36568 fix fc fuse compat problem #36610 support lite xpu choose device id #36010 update lite branch #36628 add file exists check
-
由 JingZhuangzhuang 提交于
-
由 wenbin 提交于
-
由 JingZhuangzhuang 提交于
-
由 JingZhuangzhuang 提交于
-
由 Liu-xiandong 提交于
Add paddle.nn.functional.sparse_attention API 本个PR主要将sparse_attention功能在python层进行了一层封装,OP的主体代码见:#PR35676 此外,对于封装的python 接口,增加了相应的单测。
-
由 zhangbo9674 提交于
Add fp16 kernel for clip_op.
-
由 zhangbo9674 提交于
Refine comments for GradScaler state_dict.
-
由 From00 提交于
* Add new API tensordot cherry-pick #36273
-
由 Li Min 提交于
功能:本PR的目标是提高attention模块的计算性能。 为了减少框架层对op的调度开销,本PR通过在C++层手动实现attention模块,对外提供attention 大op; 为了减少防存开销,本PR采取了两种优化方法: (1)在q,k,v计算时通过共享输入X,将该处的gemm,transpose和bias add从三次调用减少为一次; (2)使用kernel融合优化技术,在不同cuda kernel之间通过寄存器传输数据;
-