- 17 7月, 2017 15 次提交
-
-
由 Yu Yang 提交于
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
-
由 Yu Yang 提交于
-
由 Yu Yang 提交于
* Also fix unit test
-
由 Yan Chunwei 提交于
* add inputs * add ut for multiple inputs * fix AddToLayer * op_desc -> op_proto * CreateArgumentOffsetMap -> CreateInOutOffsetMap * move CreateInOutOffsetMap from OperatorBase to op registry * arg_idxs_ -> in_out_idxs_
-
由 Yu Yang 提交于
* Implement InferShape and register them, give a stub Kernel method by LOG(INFO)
-
由 Yu Yang 提交于
-
由 Qiao Longfei 提交于
-
由 Liu Yiqun 提交于
-
由 Yan Chunwei 提交于
* add NDEBUG switch to PADDLE_ENFORCE
-
由 Yu Yang 提交于
-
由 fengjiayi 提交于
-
由 武毅 提交于
* using etcd as fault tolerant training * update * workable version, ft not tested * small fix * update * remove TODO
-
由 jc 提交于
-
- 16 7月, 2017 5 次提交
-
-
由 Qiao Longfei 提交于
* OperatorBase should not store OpDesc because not All op contains an OpDesc and not all ops create from OpDesc. * Networks do not contain OpDesc and are not created by OpDesc * Do not register Network to OpRegistry. * The network is directly created by the user in Python. Not from registry. * Correctly handle the `inputs` and `outputs` of a Network. * Add CompleteAddOp() methods * Remove `AddOp(OpDesc&)` in net-op. All op are added by OperatorPtr. * Rewrite unit test for truly tested what networks do. * optimise operator_test
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
1. Refactor DDim's product() to make it more efficiently. 2. Add slice_ddim().
-
由 Qiao Longfei 提交于
* add ADD_OP_CPU to enable add op with only cpu kernel
-
由 Yu Yang 提交于
* It is used to create an operator library. It handles to split CPU and GPU sources and links operator common libraries. * It also give a reasonable warning and error when operator developer not correctly implement an operator. * Warning for lack of GPU kernel. * Same interface as `cc_library` to make code style consistent.
-
- 15 7月, 2017 8 次提交
-
-
由 Yu Yang 提交于
All OpCreation method are generated by `create_op_creation_methods::__bootstrap__` method, and stores in `op_creations` object and its methods. There are three parts to implement this feature. 1. Get all registered `OpProto` from C++ side. It is implemented in `get_all_op_protos` method. 1. Create a function to convert `kwargs` to `OpDesc` base on each op's `OpProto`. The `OpDescCreationMethod` class. 1. Convert `OpProto` to `docstring` by `get_docstring_from_op_proto` method. All three methods are unit tested. The `__bootstrap__` just combines them together and create a method in runtime. For details, please reference the doc string in `create_op_creation_methods.py` and the unit test `test_op_creation_methods.py`.
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
-
由 liaogang 提交于
-
由 liaogang 提交于
-
由 liaogang 提交于
-
- 14 7月, 2017 12 次提交
-
-
由 liaogang 提交于
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
-
由 Liu Yiqun 提交于
The newest developing image was push to dockerhub, named xreki/paddle-android:dev.
-
由 fengjiayi 提交于
-
由 fengjiayi 提交于
1. Add template T which indicates data type to `CopyFrom()`, `Slice()` and `ShareData()` functions. This makes `CopyData()` code much clearer. 2. Add `set_dim()`. 3. `product(DDim)` transforms `DDim` to `vector<int>` first and then calculate its product. That might be quite slow. For `product(dims_)` is frequently used in Tensor, we add a mumber variable `numel_` as a cache of the product result. TODO: refactor `product()` to make it more efficient. 4. Unable Tensor::operator= 5. Remove the limit of POD type, because `float16` and `int8` are not POD type.
-
由 fengjiayi 提交于
-
由 Yu Yang 提交于
* PyBind and SWIG of paddle cannot be load in a single Python process, lazy import all SWIG library of Paddle. Otherwise, the glog, gflags are imported twice in a same Python process. * Note that all PyBind11 return C++ std::string as an unicode. For protobuf, it is need be cast to `str` before use them. * Add unit test for Get `OpProtos`
-
由 Qiao Longfei 提交于
* use OperatorPtr = std::shared_ptr<OperatorBase>; * use ScopePtr = std::share_ptr<Scope>;
-
由 Yu Yang 提交于
* Let OpProto support multiple and temporary * Each input/output of Paddle's Op could be a list. Add multiple mark to OpProto. Also add a `input_format`/`output_format` attribute if that Op has multiple input or output. The format of that attribute please reference the comments in `op_proto.proto` * Add temporary mark, because some output of an Op is not used by user but used by other op for faster computation. Explicitly mark which output is temporary could let future memory/computation optimization. * Add generated field to AttrProto. * Add `AddInputs`/`AddOutputs` function * It is more readable to invoke `AddInputs` not `AddInput(multiple=true)`.
-