- 27 8月, 2021 1 次提交
-
-
由 Guanghua Yu 提交于
-
- 18 8月, 2021 1 次提交
-
-
由 XGZhang 提交于
-
- 15 7月, 2021 1 次提交
-
-
由 wanghuancoder 提交于
* cache core.ops, test=develop * refine, test=develop
-
- 05 7月, 2021 1 次提交
-
-
由 cc 提交于
* Save all scales to target ops * Move quant layers to paddle.nn.quant
-
- 09 6月, 2021 1 次提交
-
-
由 cc 提交于
* Add wrap for functional api * Refine the wraped api * Add unit test for quant functional layers * Update all unit tests for dygraph qat
-
- 26 3月, 2021 1 次提交
-
-
由 cc 提交于
* Use layer to calculate output scale * add backward for moving_average_abs_max_scale and save output scales to op's attr
-
- 19 3月, 2021 1 次提交
-
-
由 cc 提交于
* Refine calculating output scale of dygraph qat, test=develop
-
- 12 3月, 2021 1 次提交
-
-
由 guofei 提交于
* Support loading parameters from checkpoint to save quantized model * Fix the unittest test_moving_average_abs_max_scale_op * Add unittest of save_quantized_model from checkpoint * Add comments to explain the function
-
- 13 1月, 2021 1 次提交
-
-
由 huangxu96 提交于
* Implemented AddQuantDequantPass in imperative quantization. * Supported LeakyReLU Quantization * For meeting coverage rate. * Changed the file name of test of AddQuantDequant * Implemented more Quantized NoWeightLayers. * Fix the loss cannot align problem between static and dynamic model quantization, add swish as supported quantized layer in imperative quantization. * remove noweight_list * support 2.0 API such as Pool2D and ReLu
-
- 25 11月, 2020 1 次提交
-
-
由 huangxu96 提交于
* Impelement 2.0 API version Conv2d and Linear layer quantization in imperative mode. * use cudnn softmax in static Lenet * Modified ChannelwiseQAT Unittest for 2.0 API. * For CI python coverage.
-
- 24 11月, 2020 1 次提交
-
-
由 Leo Chen 提交于
* upgrade comment string to raw string * fix string in * fix string with ' ' * revert update on comments * upgrade only necessary * fix sample code checker * fix comments with '''
-
- 18 11月, 2020 1 次提交
-
-
由 Bai Yifan 提交于
* support user-defined quant and preprocess
-
- 14 10月, 2020 1 次提交
-
-
由 guofei 提交于
* Implement the function of OueScaleForTraining/OutScaleForInference in dygraph test=develop
-
- 21 9月, 2020 1 次提交
-
-
由 huangxu96 提交于
* Finished ChannelWiseQuantDequantAbsMaxOp and Passed unittests. * Finished channel-wise quantize strategy in imperative quantization. * Added Cuda code of ChannelWiseQuantDequantMaxAbsOP Add Cuda code of ChannelWiseQuantDequantMaxAbsOp * Add quant_axis for channel_wise quant. * fixed a bug in unnitests, which will not trigger axis = 1 case and cannot meet the coverage rate requirement. * Added some assert infomation and fixed some coding style mistakes.
-
- 10 9月, 2020 1 次提交
-
-
由 Zhen Wang 提交于
-
- 11 7月, 2020 1 次提交
-
-
由 Zhen Wang 提交于
* Add the imperative quantization aware training. * This is the python part of Imperative QAT. test=develop
-