- 21 6月, 2019 1 次提交
-
-
由 jiaqi 提交于
(1) use channel instead of vector/BlockingQueue in Dataset,to keep same with existing implementation, and make code more readable and flexible (dataset single output channel or multi output channel). one previous memory out of limit problem is cause by not release memory after training. (2) add Record because MultiSlotType costs too much memory (80B),fix memory out of limit problem. (3) add Channel, Archive in paddle/fluid/framework (4) change dataset from shared_ptr to unique_ptr in pybind (5) move create/destroy readers from trainer to dataset (6) move shuffle from datafeed to dataset. dataset holds memory, datafeed is only for load data and feed data to network. (7) fix thread num bug of Dataset when filelist size < thread num (8) support set_queue_num in InMemoryDataset
-
- 29 3月, 2019 15 次提交
-
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
-
由 xujiaqi01 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 xujiaqi01 提交于
-
由 xujiaqi01 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 xjqbest 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
add dist_multi_trainer for distributed training, add trainer_factory and device_worker_factory so that we can easily extend new training mode, add pull dense worker which is a singleton for parameter fetching
-