- 11 3月, 2022 1 次提交
-
-
由 Yuang Liu 提交于
-
- 01 3月, 2022 1 次提交
-
-
由 Guoxia Wang 提交于
-
- 16 2月, 2022 1 次提交
-
-
由 Weilong Wu 提交于
-
- 27 1月, 2022 1 次提交
-
-
由 Siming Dai 提交于
* add the test case for the UVA * add the context load for the uva * Add graph_sample kernel * Add graph_sample commit * add new commit for graph_sample * add unsigned long long int * delete some remarks * add cpu version * add cuda eids * add cpu eids * delete _uva * optimize speed: emplace_back, last_layer * add to_uva_tensor * add cpu return_eids choice * add gpu return_eids choice * add cpu reindex_nodes * add gpu reindex_nodes * rename op and add OMP for cpu * add incubate api * fix the compile problem for the PADDLE_ENFORE and different device * fix the rcom and windows compile problem * add unittest for graph_sample_neighbors * fix cpu unittest and unique problem * fix uva unittest, fix cuda unique problem * fix the windows compile problem * fix the windows rand_r compile problem * add correct unittest, add src_eids dispensable * delete black * combine uva unittest * mv Sample_index to Sample_Index; check input shape; fix random sample func * delete memset & cudaMemset * fix according to PR comments * fix rocm ci * modify function names according to the specification * fix windows_openblas ci * refine annotations, fix windows unittest, add default value for uva device_id, fix bug for input nodes with empty neighbors * fix rocm ci * rename graph_sample_neighbors as graph_khop_sampler, add incubate api doc * add data type * fix conflict Co-authored-by: Nwawltor <fangzeyang0904@hotmail.com>
-
- 20 1月, 2022 1 次提交
-
-
由 wanghuancoder 提交于
* Rearranged Eager AutoCodeGen directory structure * Removed USE_OP in Eager AutoCodeGen * Enabled generation for Operators without Grad/Inputs/Outputs * Resolved operators without input * Fixed merge conflicts * Enabled Eager AutoCodeGen for 10+ more operators * Refactored Eager AutoCodeGen with more organized helper objects * Enabled Eager AutoCodeGen for operators with multiple OpBases * Adjusted Eager AutoCodeGen to Enable Passing Output Tensor as Input Argument * Handled Dispensable Inputs/Outputs in Eager AutoCodeGen * Adjusted function generation/call between Python-C API & Dygraph API * Synchronized auto-generated Python-C API with Dygraph Forward Functions * support more eager tensor api * fix merge compile error * fix compile error and fit develop code * support pure CPU * fix some logic error in eager_mode * support _varbase_creator in eager mode * Added safe_initialized interface to EagerTensor for use in processing dispensable inputs * for eager mode * refine * support multiple constructor for eager tensor * add place related code * polish code * specific randint with dtype of int64 * Support pure cpu test * eager logic * refine test in pure cpu * eager logic * eager logic * eager logic, test=develop * skip core.eager when in inference, test=develop * refine, test=develop * refine, test=develop * call RetainGrad after run forward kernel, test=develop * refine, test=develop * support dygraph util, meta, guard test * eager test case * support inference test * refine test and fix initializer failed * modify eagertensor patch method * add eagertensor.clear_grandint, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * support create varbase and fix retain grad error * call monkey_patch_varbase in _test_eager_guard, test=develop * fix windows error * split clear_gradient to clear_gradient and zero_grads, test=develop * refine, test=develop * refine, test=develop * support test_imperative_basic test in eager mode * remove additional log in variable.h * remove additional log in variable.h * remove additional code create in merge * eager * fix some eager logic, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * patch_tensor_method_func, test=develop * refine, test=develop * eager test case, test=develop * refine, test=develop * eager, test=develop * eager, test=develop * eager optimizer, test=develop * eager optimizer, test=develop * eager test_imperative_optimizer_v2, test=develop * eager, test=develop * refine, test=develop * refine, test=develop * eager, test=develop * add resize in share buffer to, test=develop * eager, test=develop * fix _share_buffer_to, test=develop * refine, test=develop * refine, test=develop * support eager for dataloader,test=develop Co-authored-by: Njim19930609 <jim19930609@gmail.com> Co-authored-by: NJiabinYang <360788950@qq.com>
-
- 07 1月, 2022 1 次提交
-
-
由 zhangbo9674 提交于
* add multi tensor for adam * add merged_adam op * refine code * refine adam compute logic
-
- 24 12月, 2021 1 次提交
-
-
由 zhangbo9674 提交于
-
- 20 12月, 2021 1 次提交
-
-
由 zhangbo9674 提交于
* add multi_tensor for momentum and clear_grads for optimizer * fix bug for dygraph * add unittest * refine comment * add param_group * refine regularizaiton logic * del clear_grads * add clear_grads * add dispensable check of None * refine clear_grad * fix build bug * refine code by comment * refine code * add multi tensor check * refine param_group update * add multi tensor for static mode * refine comments * delete useless comma for momentum * refine comment for momentum * refine code by commment
-
- 17 12月, 2021 2 次提交
-
-
由 sneaxiy 提交于
* support multi precision update for LAMB * hide some api * fix ci uts * fix lamb output of dygraph * remove some changes to some PR * try to fix Py3 CI compile error * fix test_imperative_optimizer, add lars ut, add layer_norm ut * fix ut, fix format * fix ut * fix windows ci
-
由 kuizhiqing 提交于
-
- 16 12月, 2021 1 次提交
-
-
由 Liu-xiandong 提交于
Add key_padding_mask and attn_mask in sparse_attention Api 1.Key padding mask is a tensor with dimensions [batch_size, seq_len], and attention mask is a tensor with dimensions [seq_len, seq_len]. The data types of the two masks are consistent with Q, K, and V, which are float32 or float64. If the value in Mask is 0, it means that the position needs to be masked. 2.The changed files are mainly paddle/fluid/operators/sparse_attention_op.cu and python/paddle/fluid/tests/unittests/test_sparse_attention_op.py. sparse_attention has three parts: sddmm, softmax, and dsd. Adding the mask operation only needs to modify the softmax. It has no effect on the other two parts. In addition, in order to test the mask function, related tests has been added.
-
- 08 12月, 2021 1 次提交
-
-
由 wanghuancoder 提交于
* refine a test case, test=develop * publish python c api for eager, test=develop * revert modify about test_allclose_layer.py, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * delete numpy includes, use pybind11 numpy.h, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * suport eager error msg, and add grad test case, test=develop * refine, test=develop * refine, test=develop * generate eager core ops, only 4 ops, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop * refine, test=develop
-
- 01 12月, 2021 1 次提交
-
-
由 Zhanlue Yang 提交于
-