未验证 提交 ff70a269 编写于 作者: G Guanghua Yu 提交者: GitHub

[cherry-pick]Update quantization round and clip calculation methods (#43829)

* update quantization clip and round

* fix quantization clip and round Attribute

* fix typo
上级 9e776f62
......@@ -45,6 +45,10 @@ DeleteQuantDequantFilterOpPass::DeleteQuantDequantFilterOpPass() {
.End()
.AddAttr("bit_length")
.IsIntIn({8, 16})
.End()
.AddAttr("round_type")
.IsOptional()
.IsIntIn({0, 1})
.End();
AddOpCompat(OpCompat("fake_channel_wise_quantize_dequantize_abs_max"))
.AddInput("X")
......@@ -61,6 +65,10 @@ DeleteQuantDequantFilterOpPass::DeleteQuantDequantFilterOpPass() {
.End()
.AddAttr("quant_axis")
.IsIntIn({0, 1})
.End()
.AddAttr("round_type")
.IsOptional()
.IsIntIn({0, 1})
.End();
}
// Delete quant_dequant_op, then quantize and dequantize weight
......@@ -96,15 +104,18 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
auto var_map = any_op2_desc->Inputs();
std::string arg_name = "";
for (auto& name_m : var_map) {
if (std::find(name_m.second.begin(), name_m.second.end(),
if (std::find(name_m.second.begin(),
name_m.second.end(),
quant_dequant_op_out_name) != name_m.second.end()) {
arg_name = name_m.first;
break;
}
}
PADDLE_ENFORCE_GT(arg_name.size(), 0, platform::errors::InvalidArgument(
"can not find the input %s.",
quant_dequant_op_out_name));
PADDLE_ENFORCE_GT(
arg_name.size(),
0,
platform::errors::InvalidArgument("can not find the input %s.",
quant_dequant_op_out_name));
// any_op2_desc->SetAttr("enable_int8", true);
any_op2_desc->SetAttr("bit_length", bit_length);
......@@ -123,7 +134,8 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
if (dequant_type == "fake_channel_wise_quantize_dequantize_abs_max") {
int quant_axis =
BOOST_GET_CONST(int, quant_dequant_op->Op()->GetAttr("quant_axis"));
PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument(
"'quant_axis' should be 0 or 1, but "
"the received is %d",
......@@ -176,7 +188,8 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
}
}
for (int i = 0; i < channel; i++) {
PADDLE_ENFORCE_NE(weight_scale[i], 0,
PADDLE_ENFORCE_NE(weight_scale[i],
0,
platform::errors::InvalidArgument(
"Weight scale should be nonzero, but get zero."));
weight_scale[i] = weight_scale[i] / range;
......@@ -188,7 +201,8 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
abs_max_weight =
std::max(abs_max_weight, std::abs(quantized_weight_data[j]));
}
PADDLE_ENFORCE_NE(abs_max_weight, 0,
PADDLE_ENFORCE_NE(abs_max_weight,
0,
platform::errors::InvalidArgument(
"Weight scale should be nonzero, but get zero"));
weight_scale.push_back(abs_max_weight / range);
......
......@@ -54,6 +54,10 @@ DeleteQuantDequantLinearOpPass::DeleteQuantDequantLinearOpPass() {
.End()
.AddAttr("quant_axis")
.IsType<int>()
.End()
.AddAttr("round_type")
.IsOptional()
.IsType<int>()
.End();
AddOpCompat(OpCompat("dequantize_linear"))
.AddInput("X")
......@@ -74,6 +78,10 @@ DeleteQuantDequantLinearOpPass::DeleteQuantDequantLinearOpPass() {
.End()
.AddAttr("quant_axis")
.IsType<int>()
.End()
.AddAttr("round_type")
.IsOptional()
.IsType<int>()
.End();
}
// Delete quantize_linear_op dequantize_linear_op, then add input_scales
......@@ -112,7 +120,8 @@ void DeleteQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
const LoDTensor& input_scale_tensor =
scope->GetVar(quantize_linear_op_scale->Name())->Get<LoDTensor>();
PADDLE_ENFORCE_EQ(
paddle::platform::is_cpu_place(input_scale_tensor.place()), true,
paddle::platform::is_cpu_place(input_scale_tensor.place()),
true,
platform::errors::InvalidArgument(
"Input scale tensor's place should be CPU."));
const float* input_scale_data = input_scale_tensor.data<float>();
......
......@@ -52,6 +52,10 @@ DeleteWeightQuantDequantLinearOpPass::DeleteWeightQuantDequantLinearOpPass() {
.End()
.AddAttr("quant_axis")
.IsType<int>()
.End()
.AddAttr("round_type")
.IsOptional()
.IsType<int>()
.End();
AddOpCompat(OpCompat("dequantize_linear"))
.AddInput("X")
......@@ -72,6 +76,10 @@ DeleteWeightQuantDequantLinearOpPass::DeleteWeightQuantDequantLinearOpPass() {
.End()
.AddAttr("quant_axis")
.IsType<int>()
.End()
.AddAttr("round_type")
.IsOptional()
.IsType<int>()
.End();
AddOpCompat(OpCompat("conv2d"))
.AddInput("Input")
......@@ -322,7 +330,8 @@ void DeleteWeightQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
int quant_axis = BOOST_GET_CONST(
int, weight_dequantize_linear_op->Op()->GetAttr("quant_axis"));
if (quant_axis == -1) { // per_layer quant_dequant: all OP
PADDLE_ENFORCE_EQ(weight_scale_nums, 1,
PADDLE_ENFORCE_EQ(weight_scale_nums,
1,
platform::errors::InvalidArgument(
"When quant_axis == -1 means use per_layer "
"quant_dequant, weight_scale'number should be 1."));
......@@ -335,11 +344,13 @@ void DeleteWeightQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
} else if (quant_axis == 0) { // per_channel quant_dequant: conv2d,
// depthwise_conv2d, conv2d_fusion
PADDLE_ENFORCE_EQ(
weight_scale_nums, w_dims[quant_axis],
weight_scale_nums,
w_dims[quant_axis],
platform::errors::InvalidArgument(
"When quant_axis == 0 means use per_channel quant_dequant, "
"weight_scale'numbers should be equal channels."));
PADDLE_ENFORCE_EQ(w_dims.size(), 4,
PADDLE_ENFORCE_EQ(w_dims.size(),
4,
platform::errors::InvalidArgument(
"When quant_axis == 0 means use per_channel "
"quant_dequant, (conv2d, depthwise_conv2d, "
......@@ -352,7 +363,8 @@ void DeleteWeightQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
}
} else if (quant_axis == 1) {
PADDLE_ENFORCE_EQ(
weight_scale_nums, w_dims[quant_axis],
weight_scale_nums,
w_dims[quant_axis],
platform::errors::InvalidArgument(
"When quant_axis == 1 means use per_channel quant_dequant, "
"weight_scale'numbers should be equal channels."));
......@@ -360,7 +372,8 @@ void DeleteWeightQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
if (w_dims.size() == 4) { // conv2d_transpose
std::string quantized_op_type = any_op2->Op()->Type();
PADDLE_ENFORCE_EQ(
quantized_op_type, "conv2d_transpose",
quantized_op_type,
"conv2d_transpose",
platform::errors::InvalidArgument(
"When quant_axis == 1 means use per_channel quant_dequant, "
"only conv2d_transpose weight dims equal 4."));
......@@ -388,7 +401,8 @@ void DeleteWeightQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
weight_tensor->Resize(phi::make_ddim(phi::vectorize(w_dims)));
float* new_quantized_weight_data =
weight_tensor->mutable_data<float>(platform::CPUPlace());
memcpy(new_quantized_weight_data, weight_data_tmp.data(),
memcpy(new_quantized_weight_data,
weight_data_tmp.data(),
weight_tensor->numel() * sizeof(float));
nodes2rm.insert(weight_dequantize_linear_op_scale);
......
......@@ -49,6 +49,10 @@ QuantDequantFusePass::QuantDequantFusePass() {
.End()
.AddAttr("bit_length")
.IsIntIn({8, 16})
.End()
.AddAttr("round_type")
.IsOptional()
.IsIntIn({0, 1})
.End();
AddOpCompat(OpCompat("fake_quantize_moving_average_abs_max"))
.AddInput("X")
......@@ -85,6 +89,10 @@ QuantDequantFusePass::QuantDequantFusePass() {
.End()
.AddAttr("bit_length")
.IsIntIn({8, 16})
.End()
.AddAttr("round_type")
.IsOptional()
.IsIntIn({0, 1})
.End();
AddOpCompat(OpCompat("fake_dequantize_max_abs"))
.AddInput("X")
......@@ -309,7 +317,8 @@ QuantDequantFusePass::QuantDequantFusePass() {
}
// Delete quant op before quantized ops, and set input scale in the attr of
// quantized ops
void QuantDequantFusePass::DeleteQuant(ir::Graph* graph, Scope* scope,
void QuantDequantFusePass::DeleteQuant(ir::Graph* graph,
Scope* scope,
const std::string& quant_type) const {
const std::string pattern_name = "delete_quant_fuse";
GraphPatternDetector gpd;
......@@ -331,7 +340,8 @@ void QuantDequantFusePass::DeleteQuant(ir::Graph* graph, Scope* scope,
return;
}
PADDLE_ENFORCE_EQ(
subgraph.count(input_act_node), true,
subgraph.count(input_act_node),
true,
platform::errors::NotFound(
"Input act node(%s) not found in QuantDequantFuse pass.",
input_act_node->name()));
......@@ -345,12 +355,14 @@ void QuantDequantFusePass::DeleteQuant(ir::Graph* graph, Scope* scope,
// Get input scale from tensor
std::string input_scale_var_name = quant->Op()->Input("InScale").front();
PADDLE_ENFORCE_NOT_NULL(
scope, platform::errors::InvalidArgument(
"Scope in QuantDequantFuse pass should not be null."));
scope,
platform::errors::InvalidArgument(
"Scope in QuantDequantFuse pass should not be null."));
const LoDTensor& input_scale_tensor =
scope->FindVar(input_scale_var_name)->Get<LoDTensor>();
PADDLE_ENFORCE_EQ(
paddle::platform::is_cpu_place(input_scale_tensor.place()), true,
paddle::platform::is_cpu_place(input_scale_tensor.place()),
true,
platform::errors::InvalidArgument(
"Input scale tensor's place should be CPU."));
const float* input_scale_data = input_scale_tensor.data<float>();
......@@ -382,8 +394,8 @@ void QuantDequantFusePass::DeleteQuant(ir::Graph* graph, Scope* scope,
IR_NODE_LINK_TO(input_act, quantized_node);
}
// Delete nodes and edges
std::unordered_set<const Node*> nodes2rm = {input_scale, quant,
output_scale, output_act};
std::unordered_set<const Node*> nodes2rm = {
input_scale, quant, output_scale, output_act};
GraphSafeRemoveNodes(graph, nodes2rm);
};
gpd(graph, handler);
......@@ -391,7 +403,8 @@ void QuantDequantFusePass::DeleteQuant(ir::Graph* graph, Scope* scope,
// Delete dequant op after quantized ops, and convert weight from fp32 range to
// int8 range
void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
void QuantDequantFusePass::FuseDequant(ir::Graph* graph,
Scope* scope,
const std::string& quantized_op_type,
const std::string& dequant_type) const {
std::string weight_name = "";
......@@ -436,7 +449,8 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
return;
}
PADDLE_ENFORCE_EQ(
subgraph.count(quantized_op_input), true,
subgraph.count(quantized_op_input),
true,
platform::errors::NotFound("Quantized op input node(%s) did not find "
"in QuantDequantFuse pass.",
quantized_op_input->name()));
......@@ -464,14 +478,16 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
subgraph.at(pattern.GetPDNode("dequant_channel_scale"));
auto scales_name = dequant_op_node->Op()->Input("Scales");
PADDLE_ENFORCE_EQ(
scales_name.size(), 2,
scales_name.size(),
2,
platform::errors::InvalidArgument(
"Scales size in channel-wise dequantize op should be 2, got %d.",
scales_name.size()));
const LoDTensor& channel_scale_tensor =
scope->FindVar(scales_name[0])->Get<LoDTensor>();
PADDLE_ENFORCE_EQ(
paddle::platform::is_cpu_place(channel_scale_tensor.place()), true,
paddle::platform::is_cpu_place(channel_scale_tensor.place()),
true,
platform::errors::InvalidArgument(
"Channel scale tensor's place should be CPU."));
const float* channel_scale_data = channel_scale_tensor.data<float>();
......@@ -497,7 +513,8 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
if (quantized_op_type == "mul" || quantized_op_type == "matmul" ||
quantized_op_type == "matmul_v2" || quantized_op_type == "fc") {
if (dequant_type == "fake_dequantize_max_abs") {
PADDLE_ENFORCE_EQ(weight_scale.size(), 1,
PADDLE_ENFORCE_EQ(weight_scale.size(),
1,
platform::errors::InvalidArgument(
"mul/matmul/matmul_v2 op weight dequantized by "
"[fake_dequantize_max_abs] "
......@@ -511,7 +528,8 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
if (quant_axis == 0) {
} else {
PADDLE_ENFORCE_EQ(
quant_axis == 1, true,
quant_axis == 1,
true,
platform::errors::InvalidArgument(
"'quant_axis' of mul/matmul/fc/matmul_v2 op weight "
"dequantized by "
......@@ -520,14 +538,16 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
quant_axis));
}
PADDLE_ENFORCE_EQ(
weight_scale.size(), static_cast<size_t>(w_dims[1]),
weight_scale.size(),
static_cast<size_t>(w_dims[1]),
platform::errors::InvalidArgument(
"mul/matmul/matmul_v2 op weight dequantized by "
"[fake_channel_wise_dequantize_max_abs] requires weight scale "
"size = 2nd dim of mul/matmul/matmul_v2's weight, which is %d, "
"but got "
"%d.",
static_cast<size_t>(w_dims[1]), weight_scale.size()));
static_cast<size_t>(w_dims[1]),
weight_scale.size()));
for (int j = 0; j < weight_tensor->numel(); j++) {
quantized_weight_data[j] *= weight_scale[j % w_dims[1]];
}
......@@ -535,7 +555,8 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
} else if (quantized_op_type == "conv2d" ||
quantized_op_type == "depthwise_conv2d") {
PADDLE_ENFORCE_EQ(
dequant_type, "fake_channel_wise_dequantize_max_abs",
dequant_type,
"fake_channel_wise_dequantize_max_abs",
platform::errors::InvalidArgument(
"conv2d op must be dequantized by "
"[fake_channel_wise_dequantize_max_abs], but got %s. "
......@@ -546,7 +567,8 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
if (quant_axis == 0) {
} else {
PADDLE_ENFORCE_EQ(
quant_axis == 0, true,
quant_axis == 0,
true,
platform::errors::InvalidArgument(
"'quant_axis' of conv2d/depthwise_conv2d op weight dequantized "
"by [fake_channel_wise_dequantize_max_abs]should be 0, but "
......@@ -554,18 +576,21 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
quant_axis));
}
PADDLE_ENFORCE_EQ(
weight_scale.size(), static_cast<size_t>(w_dims[0]),
weight_scale.size(),
static_cast<size_t>(w_dims[0]),
platform::errors::InvalidArgument(
"conv2d op requires weight scale size = channel size of the "
"weight, which is %d, but got %d.",
static_cast<size_t>(w_dims[0]), weight_scale.size()));
static_cast<size_t>(w_dims[0]),
weight_scale.size()));
for (int j = 0; j < weight_tensor->numel(); j++) {
int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
quantized_weight_data[j] *= weight_scale[j / inner_size];
}
} else if (quantized_op_type == "conv2d_transpose") {
PADDLE_ENFORCE_EQ(
dequant_type, "fake_channel_wise_dequantize_max_abs",
dequant_type,
"fake_channel_wise_dequantize_max_abs",
platform::errors::InvalidArgument(
"conv2d_transpose must be dequantized by "
"[fake_channel_wise_dequantize_max_abs], but got %s",
......@@ -573,7 +598,8 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
if (quant_axis == 0) {
} else {
PADDLE_ENFORCE_EQ(
quant_axis == 1, true,
quant_axis == 1,
true,
platform::errors::InvalidArgument(
"'quant_axis' of conv2d_transpose op weight dequantized by "
"[fake_channel_wise_dequantize_max_abs]should be 1, but "
......@@ -581,11 +607,13 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope,
quant_axis));
}
PADDLE_ENFORCE_EQ(
weight_scale.size(), static_cast<size_t>(w_dims[1]),
weight_scale.size(),
static_cast<size_t>(w_dims[1]),
platform::errors::InvalidArgument(
"conv2d_transpose op requires weight scale size = channel size "
"of the weight, which is %d, but got %d.",
static_cast<size_t>(w_dims[1]), weight_scale.size()));
static_cast<size_t>(w_dims[1]),
weight_scale.size()));
for (int j = 0; j < weight_tensor->numel(); j++) {
int inner_size = w_dims[2] * w_dims[3];
quantized_weight_data[j] *= weight_scale[(j / inner_size) % w_dims[1]];
......@@ -639,8 +667,13 @@ void QuantDequantFusePass::ApplyImpl(ir::Graph* graph) const {
std::unordered_set<std::string> quant_types = {
"fake_quantize_range_abs_max", "fake_quantize_moving_average_abs_max"};
std::unordered_set<std::string> quantized_op_types = {
"conv2d", "mul", "matmul", "depthwise_conv2d",
"conv2d_transpose", "fc", "matmul_v2",
"conv2d",
"mul",
"matmul",
"depthwise_conv2d",
"conv2d_transpose",
"fc",
"matmul_v2",
};
auto* scope = param_scope();
......
......@@ -13,8 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fake_quantize_op.h"
#include <algorithm>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/transform.h"
......@@ -31,8 +33,10 @@ struct Compare {
template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx, const T* in,
const int num, T* out) {
void operator()(const platform::CPUDeviceContext &ctx,
const T *in,
const int num,
T *out) {
*out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
}
};
......@@ -41,24 +45,26 @@ template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& in_tensor, const int quant_axis,
T* out_abs_max) {
void operator()(const platform::CPUDeviceContext &ctx,
const framework::Tensor &in_tensor,
const int quant_axis,
T *out_abs_max) {
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// conv2d_transpose and mul
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
auto* in_data = in_tensor.data<T>();
auto *in_data = in_tensor.data<T>();
auto in_dims = in_tensor.dims();
const int64_t channel = in_dims[quant_axis];
if (quant_axis == 0) {
const int64_t channel_size = in_tensor.numel() / channel;
for (int64_t i = 0; i < channel; i++) {
auto* start = in_data + i * channel_size;
auto* end = in_data + (i + 1) * channel_size;
auto *start = in_data + i * channel_size;
auto *end = in_data + (i + 1) * channel_size;
out_abs_max[i] =
std::abs(*(std::max_element(start, end, Compare<T>())));
}
......@@ -70,8 +76,8 @@ struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
const int64_t step_j = in_tensor.numel() / (in_dims[0] * in_dims[1]);
for (int64_t i = 0; i < in_dims[0]; i++) {
for (int64_t j = 0; j < in_dims[1]; j++) {
auto* start = in_data + i * step_i + j * step_j;
auto* end = in_data + i * step_i + (j + 1) * step_j;
auto *start = in_data + i * step_i + j * step_j;
auto *end = in_data + i * step_i + (j + 1) * step_j;
T abs_max = std::abs(*(std::max_element(start, end, Compare<T>())));
out_abs_max[j] = std::max(out_abs_max[j], abs_max);
}
......@@ -84,16 +90,30 @@ template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
void operator()(const platform::CPUDeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
framework::Tensor *out) {
T s = scale.data<T>()[0];
T inv_s = inverse(s);
platform::Transform<platform::CPUDeviceContext> trans;
trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
out->mutable_data<T>(ctx.GetPlace()), phi::ClipFunctor<T>(-s, s));
auto out_e = framework::EigenVector<T>::Flatten(*out);
out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
if (round_type == 0) {
trans(ctx,
in.data<T>(),
in.data<T>() + in.numel(),
out->mutable_data<T>(ctx.GetPlace()),
QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
} else {
trans(ctx,
in.data<T>(),
in.data<T>() + in.numel(),
out->mutable_data<T>(ctx.GetPlace()),
phi::ClipFunctor<T>(-s, s));
auto out_e = framework::EigenVector<T>::Flatten(*out);
out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
}
}
};
......@@ -101,18 +121,34 @@ template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
void operator()(const platform::CPUDeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
framework::Tensor *out) {
T s = scale.data<T>()[0];
T inv_s = inverse(s);
platform::Transform<platform::CPUDeviceContext> trans;
trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
out->mutable_data<T>(ctx.GetPlace()), phi::ClipFunctor<T>(-s, s));
auto out_e = framework::EigenVector<T>::Flatten(*out);
out_e.device(*ctx.eigen_device()) =
(bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
if (round_type == 0) {
trans(ctx,
in.data<T>(),
in.data<T>() + in.numel(),
out->mutable_data<T>(ctx.GetPlace()),
QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
auto out_e = framework::EigenVector<T>::Flatten(*out);
out_e.device(*ctx.eigen_device()) = out_e * s / static_cast<T>(bin_cnt);
} else {
trans(ctx,
in.data<T>(),
in.data<T>() + in.numel(),
out->mutable_data<T>(ctx.GetPlace()),
phi::ClipFunctor<T>(-s, s));
auto out_e = framework::EigenVector<T>::Flatten(*out);
out_e.device(*ctx.eigen_device()) =
(bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
}
}
};
template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
......@@ -120,20 +156,24 @@ template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
void operator()(const platform::CPUDeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
const int quant_axis,
framework::Tensor *out) {
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// conv2d_transpose and mul
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
auto* scale_data = scale.data<T>();
auto* in_data = in.data<T>();
auto* out_data = out->mutable_data<T>(ctx.GetPlace());
auto *scale_data = scale.data<T>();
auto *in_data = in.data<T>();
auto *out_data = out->mutable_data<T>(ctx.GetPlace());
auto in_dims = in.dims();
const int64_t channel = in_dims[quant_axis];
platform::Transform<platform::CPUDeviceContext> trans;
......@@ -141,17 +181,31 @@ struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
const int64_t channel_size = in.numel() / channel;
for (int64_t i = 0; i < channel; i++) {
T s = scale_data[i];
auto* start = in_data + i * channel_size;
auto* end = in_data + (i + 1) * channel_size;
trans(ctx, start, end, out_data + i * channel_size,
phi::ClipFunctor<T>(-s, s));
}
for (int64_t i = 0; i < channel; i++) {
T s = scale_data[i];
auto *start = in_data + i * channel_size;
auto *end = in_data + (i + 1) * channel_size;
T inv_s = inverse(s);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
if (round_type == 0) {
trans(ctx,
start,
end,
out_data + i * channel_size,
QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
} else {
trans(ctx,
start,
end,
out_data + i * channel_size,
phi::ClipFunctor<T>(-s, s));
}
}
if (round_type == 1) {
for (int64_t i = 0; i < channel; i++) {
T s = scale_data[i];
T inv_s = inverse(s);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
}
}
} else if (quant_axis == 1) {
const int64_t step_i = in.numel() / in_dims[0];
......@@ -160,12 +214,20 @@ struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
for (int j = 0; j < in_dims[1]; j++) {
T s = scale_data[j];
T inv_s = inverse(s);
auto* start = in_data + i * step_i + j * step_j;
auto* end = in_data + i * step_i + (j + 1) * step_j;
auto* cur_out_data = out_data + i * step_i + j * step_j;
trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
for (int k = 0; k < step_j; k++) {
cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]);
auto *start = in_data + i * step_i + j * step_j;
auto *end = in_data + i * step_i + (j + 1) * step_j;
auto *cur_out_data = out_data + i * step_i + j * step_j;
if (round_type == 0) {
trans(ctx,
start,
end,
cur_out_data,
QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
} else {
trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
for (int k = 0; k < step_j; k++) {
cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]);
}
}
}
}
......@@ -177,19 +239,23 @@ template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
float>;
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
void operator()(const platform::CPUDeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
const int quant_axis,
framework::Tensor *out) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
auto* scale_data = scale.data<T>();
auto* in_data = in.data<T>();
auto* out_data = out->mutable_data<T>(ctx.GetPlace());
auto *scale_data = scale.data<T>();
auto *in_data = in.data<T>();
auto *out_data = out->mutable_data<T>(ctx.GetPlace());
auto in_dims = in.dims();
const int64_t channel = in_dims[quant_axis];
platform::Transform<platform::CPUDeviceContext> trans;
......@@ -197,18 +263,35 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
const int64_t channel_size = in.numel() / channel;
for (int i = 0; i < channel; i++) {
T s = scale_data[i];
auto* start = in_data + i * channel_size;
auto* end = in_data + (i + 1) * channel_size;
trans(ctx, start, end, out_data + i * channel_size,
phi::ClipFunctor<T>(-s, s));
auto *start = in_data + i * channel_size;
auto *end = in_data + (i + 1) * channel_size;
if (round_type == 0) {
T inv_s = inverse(s);
trans(ctx,
start,
end,
out_data + i * channel_size,
QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
} else {
trans(ctx,
start,
end,
out_data + i * channel_size,
phi::ClipFunctor<T>(-s, s));
}
}
for (int i = 0; i < channel; i++) {
T s = scale_data[i];
T inv_s = inverse(s);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
out_e.device(*ctx.eigen_device()) =
(bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
if (round_type == 0) {
out_e.device(*ctx.eigen_device()) =
out_e * s / static_cast<T>(bin_cnt);
} else {
T inv_s = inverse(s);
out_e.device(*ctx.eigen_device()) =
(bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
}
}
} else if (quant_axis == 1) {
const int64_t step_i = in.numel() / in_dims[0];
......@@ -217,13 +300,25 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
for (int j = 0; j < in_dims[1]; j++) {
T s = scale_data[j];
T inv_s = inverse(s);
auto* start = in_data + i * step_i + j * step_j;
auto* end = in_data + i * step_i + (j + 1) * step_j;
auto* cur_out_data = out_data + i * step_i + j * step_j;
trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
auto *start = in_data + i * step_i + j * step_j;
auto *end = in_data + i * step_i + (j + 1) * step_j;
auto *cur_out_data = out_data + i * step_i + j * step_j;
if (round_type == 0) {
trans(ctx,
start,
end,
cur_out_data,
QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
} else {
trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
}
for (int k = 0; k < step_j; k++) {
cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]) *
s / static_cast<T>(bin_cnt);
if (round_type == 0) {
cur_out_data[k] = cur_out_data[k] * s / static_cast<T>(bin_cnt);
} else {
cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]) *
s / static_cast<T>(bin_cnt);
}
}
}
}
......@@ -235,12 +330,14 @@ template struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext,
float>;
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& cur_scale,
const framework::Tensor& last_scale,
const framework::Tensor& iter, const int window_size,
framework::Tensor* scales_arr, framework::Tensor* out_scale) {
T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
void operator()(const platform::CPUDeviceContext &ctx,
const framework::Tensor &cur_scale,
const framework::Tensor &last_scale,
const framework::Tensor &iter,
const int window_size,
framework::Tensor *scales_arr,
framework::Tensor *out_scale) {
T *scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
int64_t it = iter.data<int64_t>()[0];
int idx = it % window_size;
T removed = scale_arr[idx];
......@@ -252,8 +349,8 @@ struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
max = cur;
} else if (fabs(removed - max) < 1e-6) {
int size = (it > window_size) ? window_size : it;
FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
&max);
FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(
ctx, scale_arr, size, &max);
}
out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
}
......@@ -263,11 +360,14 @@ template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& in_accum,
const framework::Tensor& in_state, const T* cur_scale,
const float rate, framework::Tensor* out_state,
framework::Tensor* out_accum, framework::Tensor* out_scale) {
void operator()(const platform::CPUDeviceContext &ctx,
const framework::Tensor &in_accum,
const framework::Tensor &in_state,
const T *cur_scale,
const float rate,
framework::Tensor *out_state,
framework::Tensor *out_accum,
framework::Tensor *out_scale) {
T accum = in_accum.data<T>()[0];
T state = in_state.data<T>()[0];
T scale = cur_scale[0];
......@@ -287,18 +387,22 @@ template struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext,
class FakeQuantOrWithDequantAbsMaxOp : public framework::OperatorWithKernel {
public:
FakeQuantOrWithDequantAbsMaxOp(const std::string& type,
const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
FakeQuantOrWithDequantAbsMaxOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(
ctx->HasInput("X"), "Input", "X", "FakeQuantOrWithDequantAbsMaxOp");
OP_INOUT_CHECK(ctx->HasOutput("Out"),
"Output",
"Out",
"FakeQuantOrWithDequantAbsMaxOp");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
"FakeQuantOrWithDequantAbsMaxOp");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
"Output",
"OutScale",
"FakeQuantOrWithDequantAbsMaxOp");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->SetOutputDim("OutScale", {1});
......@@ -307,7 +411,7 @@ class FakeQuantOrWithDequantAbsMaxOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
......@@ -325,13 +429,32 @@ class FakeQuantOrWithDequantAbsMaxOpMaker
AddOutput("OutScale", "(Tensor) Current scale");
AddAttr<int>("bit_length", "(int, default 8)")
.SetDefault(8)
.AddCustomChecker([](const int& bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
.AddCustomChecker([](const int &bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
true,
platform::errors::InvalidArgument(
"'bit_length' should be between 1 and 16, but "
"the received is %d",
bit_length));
});
AddAttr<int>(
"round_type",
"(int, default 1) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3")
.SetDefault(1)
.AddCustomChecker([](const int &round_type) {
PADDLE_ENFORCE_EQ(
round_type == 0 || round_type == 1,
true,
platform::errors::InvalidArgument(
"'round_type' should be 0 or 1, 0 rounding to "
"nearest ties to even and 1 is rounding to nearest "
"ties away from zero.but the received is %d",
round_type));
})
.AsExtra();
AddComment(R"DOC(
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
......@@ -354,12 +477,16 @@ class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
"FakeChannelWiseQuantizeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(
ctx->HasInput("X"), "Input", "X", "FakeChannelWiseQuantizeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("Out"),
"Output",
"Out",
"FakeChannelWiseQuantizeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
"Output",
"OutScale",
"FakeChannelWiseQuantizeAbsMax");
int quant_axis = ctx->Attrs().Get<int>("quant_axis");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
......@@ -369,7 +496,7 @@ class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
......@@ -389,8 +516,9 @@ class FakeChannelWiseQuantizeAbsMaxOpMaker
"For conv2d, depthwise_conv2d, conv2d_transpose "
"and mul, the quant_axis is equal to the cout axis.")
.SetDefault(0)
.AddCustomChecker([](const int& quant_axis) {
PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
.AddCustomChecker([](const int &quant_axis) {
PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument(
"'quant_axis' should be 0 or 1, but "
"the received is %d",
......@@ -398,13 +526,32 @@ class FakeChannelWiseQuantizeAbsMaxOpMaker
});
AddAttr<int>("bit_length", "(int, default 8)")
.SetDefault(8)
.AddCustomChecker([](const int& bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
.AddCustomChecker([](const int &bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
true,
platform::errors::InvalidArgument(
"'bit_length' should be between 1 and 16, but "
"the received is %d",
bit_length));
});
AddAttr<int>(
"round_type",
"(int, default 1) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3")
.SetDefault(1)
.AddCustomChecker([](const int &round_type) {
PADDLE_ENFORCE_EQ(
round_type == 0 || round_type == 1,
true,
platform::errors::InvalidArgument(
"'round_type' should be 0 or 1, 0 rounding to "
"nearest ties to even and 1 is rounding to nearest "
"ties away from zero.but the received is %d",
round_type));
})
.AsExtra();
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
......@@ -427,12 +574,18 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxOp
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"),
"Input",
"X",
"FakeChannelWiseQuantizeDequantizeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
OP_INOUT_CHECK(ctx->HasOutput("Out"),
"Output",
"Out",
"FakeChannelWiseQuantizeDequantizeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
"Output",
"OutScale",
"FakeChannelWiseQuantizeDequantizeAbsMax");
int quant_axis = ctx->Attrs().Get<int>("quant_axis");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
......@@ -442,7 +595,7 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxOp
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
......@@ -462,8 +615,9 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
"For conv2d, depthwise_conv2d, conv2d_transpose "
"and mul, the quant_axis is equal to the cout axis.")
.SetDefault(0)
.AddCustomChecker([](const int& quant_axis) {
PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
.AddCustomChecker([](const int &quant_axis) {
PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument(
"'quant_axis' should be 0 or 1, but "
"the received is %d",
......@@ -471,13 +625,32 @@ class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
});
AddAttr<int>("bit_length", "(int, default 8)")
.SetDefault(8)
.AddCustomChecker([](const int& bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
.AddCustomChecker([](const int &bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
true,
platform::errors::InvalidArgument(
"'bit_length' should be between 1 and 16, but "
"the received is %d",
bit_length));
});
AddAttr<int>(
"round_type",
"(int, default 1) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3")
.SetDefault(1)
.AddCustomChecker([](const int &round_type) {
PADDLE_ENFORCE_EQ(
round_type == 0 || round_type == 1,
true,
platform::errors::InvalidArgument(
"'round_type' should be 0 or 1, 0 rounding to "
"nearest ties to even and 1 is rounding to nearest "
"ties away from zero.but the received is %d",
round_type));
})
.AsExtra();
AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.
......@@ -493,17 +666,19 @@ $$0 \leq c \lt \ the\ channel\ number\ of\ X$$
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
public:
FakeQuantizeRangeAbsMaxOp(const std::string& type,
const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
FakeQuantizeRangeAbsMaxOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeQuantizeRangeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
"FakeQuantizeRangeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
OP_INOUT_CHECK(
ctx->HasOutput("Out"), "Output", "Out", "FakeQuantizeRangeAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
"Output",
"OutScale",
"FakeQuantizeRangeAbsMax");
if (ctx->HasOutput("OutScales")) {
int window_size = ctx->Attrs().Get<int>("window_size");
......@@ -516,7 +691,7 @@ class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
......@@ -537,13 +712,32 @@ class FakeQuantizeRangeAbsMaxOpMaker
.SetDefault(10000);
AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
.SetDefault(8)
.AddCustomChecker([](const int& bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
.AddCustomChecker([](const int &bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
true,
platform::errors::InvalidArgument(
"'bit_length' should be between 1 and 16, but "
"the received is %d",
bit_length));
});
AddAttr<int>(
"round_type",
"(int, default 1) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3")
.SetDefault(1)
.AddCustomChecker([](const int &round_type) {
PADDLE_ENFORCE_EQ(
round_type == 0 || round_type == 1,
true,
platform::errors::InvalidArgument(
"'round_type' should be 0 or 1, 0 rounding to "
"nearest ties to even and 1 is rounding to nearest "
"ties away from zero.but the received is %d",
round_type));
})
.AsExtra();
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
......@@ -563,17 +757,24 @@ class FakeQuantOrWithDequantMovingAverageAbsMaxOp
: public framework::OperatorWithKernel {
public:
FakeQuantOrWithDequantMovingAverageAbsMaxOp(
const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"),
"Input",
"X",
"FakeQuantOrWithDequantMovingAverageAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
OP_INOUT_CHECK(ctx->HasOutput("Out"),
"Output",
"Out",
"FakeQuantOrWithDequantMovingAverageAbsMax");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
"Output",
"OutScale",
"FakeQuantOrWithDequantMovingAverageAbsMax");
if (ctx->HasOutput("OutState")) {
ctx->SetOutputDim("OutState", {1});
......@@ -588,7 +789,7 @@ class FakeQuantOrWithDequantMovingAverageAbsMaxOp
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
......@@ -611,13 +812,32 @@ class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
.SetDefault(0.9);
AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
.SetDefault(8)
.AddCustomChecker([](const int& bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
.AddCustomChecker([](const int &bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
true,
platform::errors::InvalidArgument(
"'bit_length' should be between 1 and 16, but "
"the received is %d",
bit_length));
});
AddAttr<int>(
"round_type",
"(int, default 1) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3")
.SetDefault(1)
.AddCustomChecker([](const int &round_type) {
PADDLE_ENFORCE_EQ(
round_type == 0 || round_type == 1,
true,
platform::errors::InvalidArgument(
"'round_type' should be 0 or 1, 0 rounding to "
"nearest ties to even and 1 is rounding to nearest "
"ties away from zero.but the received is %d",
round_type));
})
.AsExtra();
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
......@@ -644,10 +864,12 @@ class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
"MovingAverageAbsMaxScale");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(
ctx->HasInput("X"), "Input", "X", "MovingAverageAbsMaxScale");
OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
"Output",
"OutScale",
"MovingAverageAbsMaxScale");
if (ctx->HasOutput("OutState")) {
......@@ -665,7 +887,7 @@ class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
......@@ -705,19 +927,23 @@ class StrightThroughEstimatorGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
auto out_grad_name = framework::GradVarName("Out");
auto x_grad_name = framework::GradVarName("X");
OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
OP_INOUT_CHECK(ctx->HasInput(out_grad_name),
"Input",
out_grad_name,
"StrightThroughEstimatorGradOp");
OP_INOUT_CHECK(ctx->HasOutput(x_grad_name), "Output", x_grad_name,
OP_INOUT_CHECK(ctx->HasOutput(x_grad_name),
"Output",
x_grad_name,
"StrightThroughEstimatorGradOp");
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name));
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
auto input_data_type = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
return framework::OpKernelType(input_data_type, ctx.GetPlace());
......@@ -745,7 +971,8 @@ namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(
fake_quantize_abs_max, ops::FakeQuantOrWithDequantAbsMaxOp,
fake_quantize_abs_max,
ops::FakeQuantOrWithDequantAbsMaxOp,
ops::FakeQuantOrWithDequantAbsMaxOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
......@@ -753,7 +980,8 @@ REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
ops::FakeQuantizeAbsMaxKernel<CPU, float>);
REGISTER_OPERATOR(
fake_quantize_dequantize_abs_max, ops::FakeQuantOrWithDequantAbsMaxOp,
fake_quantize_dequantize_abs_max,
ops::FakeQuantOrWithDequantAbsMaxOp,
ops::FakeQuantOrWithDequantAbsMaxOpMaker,
ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
......@@ -761,7 +989,8 @@ REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_abs_max,
ops::FakeQuantizeDequantizeAbsMaxKernel<CPU, float>);
REGISTER_OPERATOR(
fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
fake_quantize_range_abs_max,
ops::FakeQuantizeRangeAbsMaxOp,
ops::FakeQuantizeRangeAbsMaxOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
......@@ -788,7 +1017,8 @@ REGISTER_OP_CPU_KERNEL(
ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);
REGISTER_OPERATOR(
fake_channel_wise_quantize_abs_max, ops::FakeChannelWiseQuantizeAbsMaxOp,
fake_channel_wise_quantize_abs_max,
ops::FakeChannelWiseQuantizeAbsMaxOp,
ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
......@@ -796,7 +1026,8 @@ REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
REGISTER_OPERATOR(
moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleOp,
moving_average_abs_max_scale,
ops::MovingAverageAbsMaxScaleOp,
ops::MovingAverageAbsMaxScaleOpMaker,
ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
......@@ -832,7 +1063,7 @@ REGISTER_OP_VERSION(moving_average_abs_max_scale)
"Delete output in order to make the inference model not "
"save moving_average_abs_max_scale operator. This will "
"make the quantitative model be correctly applied in inference."))
.AddCheckpoint(
R"ROC(Incompatible upgrade of output [Out])ROC",
paddle::framework::compatible::OpVersionDesc().NewOutput(
"Out", "In order to support dygraph qat, add output again."));
.AddCheckpoint(R"ROC(Incompatible upgrade of output [Out])ROC",
paddle::framework::compatible::OpVersionDesc().NewOutput(
"Out",
"In order to support dygraph qat, add output again."));
......@@ -36,12 +36,12 @@ struct QuantizeDataType<paddle::platform::float16> {
};
template <typename T>
__global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
__global__ void FindAbsMaxKernel(const T *in, const int n, T *out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
extern __shared__ char* shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T*>(shared_max_data_tmp);
extern __shared__ char *shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T *>(shared_max_data_tmp);
if (gridDim.x > 1) {
T local_max_data = T(0);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
......@@ -73,18 +73,20 @@ __global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
template <typename T>
struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx, const T* in,
const int num, T* out) {
void operator()(const platform::CUDADeviceContext &ctx,
const T *in,
const int num,
T *out) {
int block = 1024;
int grid = (block - 1 + num) / block;
grid = (grid > block) ? block : grid;
framework::Tensor max;
T* max_data = max.mutable_data<T>(phi::make_ddim({grid}), ctx.GetPlace());
FindAbsMaxKernel<T><<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(
in, num, max_data);
FindAbsMaxKernel<T><<<1, block, 1024 * sizeof(T), ctx.stream()>>>(
max_data, grid, out);
T *max_data = max.mutable_data<T>(phi::make_ddim({grid}), ctx.GetPlace());
FindAbsMaxKernel<T>
<<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(in, num, max_data);
FindAbsMaxKernel<T>
<<<1, block, 1024 * sizeof(T), ctx.stream()>>>(max_data, grid, out);
}
};
......@@ -93,13 +95,15 @@ template struct FindAbsMaxFunctor<platform::CUDADeviceContext,
paddle::platform::float16>;
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T* in, const int n,
const int c, T* out) {
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T *in,
const int n,
const int c,
T *out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
extern __shared__ char* shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T*>(shared_max_data_tmp);
const T *in_c = in + blockIdx.x * channel_size;
extern __shared__ char *shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T *>(shared_max_data_tmp);
T local_max_data = T(0);
for (int i = tid; i < channel_size; i += blockDim.x) {
T tmp = static_cast<T>(
......@@ -122,17 +126,16 @@ __global__ void FindChannelAbsMaxKernelQuantAxis0(const T* in, const int n,
}
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis1(const T* in, const int n,
const int cin, const int cout,
T* out) {
extern __shared__ char* shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T*>(shared_max_data_tmp);
__global__ void FindChannelAbsMaxKernelQuantAxis1(
const T *in, const int n, const int cin, const int cout, T *out) {
extern __shared__ char *shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T *>(shared_max_data_tmp);
int cout_wh_size = n / cin;
int wh_size = n / (cin * cout);
int tid = threadIdx.x;
int bid = blockIdx.x;
const T* in_current = in + tid * cout_wh_size + bid * wh_size;
const T *in_current = in + tid * cout_wh_size + bid * wh_size;
T local_max_data = T(0);
for (int i = 0; i < wh_size; i++) {
T tmp = static_cast<T>(
......@@ -162,24 +165,26 @@ __global__ void FindChannelAbsMaxKernelQuantAxis1(const T* in, const int n,
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in_tensor, const int quant_axis,
T* out_abs_max) {
void operator()(const platform::CUDADeviceContext &ctx,
const framework::Tensor &in_tensor,
const int quant_axis,
T *out_abs_max) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
const int num = in_tensor.numel();
auto in_dims = in_tensor.dims();
const T* in_data = in_tensor.data<T>();
const T *in_data = in_tensor.data<T>();
if (quant_axis == 0) {
int cout = in_dims[0];
int grid = cout;
int block = 1024;
FindChannelAbsMaxKernelQuantAxis0<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cout, out_abs_max);
FindChannelAbsMaxKernelQuantAxis0<T>
<<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cout, out_abs_max);
} else if (quant_axis == 1) {
int cin = in_dims[0];
int cout = in_dims[1];
......@@ -194,17 +199,17 @@ struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
for (int i = 0; i < cin / max_threads; i++) {
int block = max_threads;
FindChannelAbsMaxKernelQuantAxis1<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cin, cout, out_abs_max);
FindChannelAbsMaxKernelQuantAxis1<T>
<<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cin, cout, out_abs_max);
in_data += num / cin;
}
int block = cin % max_threads;
if (block > 0) {
FindChannelAbsMaxKernelQuantAxis1<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, in_dims[0], in_dims[1], out_abs_max);
FindChannelAbsMaxKernelQuantAxis1<T>
<<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, in_dims[0], in_dims[1], out_abs_max);
}
}
}
......@@ -213,8 +218,12 @@ struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T>
__global__ void ClipAndQuantKernel(const T* in, const T* scale,
const int bin_cnt, const int n, T* out) {
__global__ void ClipAndQuantKernel(const T *in,
const T *scale,
const int bin_cnt,
const int round_type,
const int n,
T *out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
......@@ -226,17 +235,30 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale,
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
ComputeDataType x = static_cast<ComputeDataType>(in[i]);
ComputeDataType v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt_t * inv_s * v;
out[i] = static_cast<T>(round(v));
if (round_type == 0) {
x = bin_cnt_t * inv_s * x;
x = roundWithTiesToEven(x);
ComputeDataType max_bound = bin_cnt_t;
ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
x = x > max_bound ? max_bound : x;
x = x < min_bound ? min_bound : x;
out[i] = static_cast<T>(x);
} else {
ComputeDataType v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt_t * inv_s * v;
out[i] = static_cast<T>(round(v));
}
}
}
template <typename T>
__global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
const int bin_cnt, const int n,
T* out) {
__global__ void ClipAndQuantDequantKernel(const T *in,
const T *scale,
const int bin_cnt,
const int round_type,
const int n,
T *out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
......@@ -248,29 +270,42 @@ __global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
ComputeDataType x = static_cast<ComputeDataType>(in[i]);
x = x > s ? s : x;
x = x < -s ? -s : x;
x = bin_cnt_t * inv_s * x;
x = round(x);
out[i] = static_cast<T>((x * s) / bin_cnt_t);
if (round_type == 0) {
x = bin_cnt_t * inv_s * x;
x = roundWithTiesToEven(x);
ComputeDataType max_bound = bin_cnt_t;
ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
x = x > max_bound ? max_bound : x;
x = x < min_bound ? min_bound : x;
out[i] = static_cast<T>((x * s) / bin_cnt_t);
} else {
x = x > s ? s : x;
x = x < -s ? -s : x;
x = bin_cnt_t * inv_s * x;
x = round(x);
out[i] = static_cast<T>((x * s) / bin_cnt_t);
}
}
}
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
void operator()(const platform::CUDADeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
framework::Tensor *out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
const T *in_data = in.data<T>();
const T *scale_data = scale.data<T>();
T *out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
in_data, scale_data, bin_cnt, round_type, num, out_data);
}
};
......@@ -278,33 +313,39 @@ template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
void operator()(const platform::CUDADeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
framework::Tensor *out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
const T *in_data = in.data<T>();
const T *scale_data = scale.data<T>();
T *out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantDequantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
in_data, scale_data, bin_cnt, round_type, num, out_data);
}
};
// ChannelClipAndQuantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T *in,
const T *scale,
const int bin_cnt,
const int round_type,
const int64_t n,
const int c, T* out) {
const int c,
T *out) {
int tid = threadIdx.x;
int64_t channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
const T *in_c = in + blockIdx.x * channel_size;
T *out_c = out + blockIdx.x * channel_size;
using ComputeDataType = typename QuantizeDataType<T>::type;
......@@ -314,18 +355,33 @@ __global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
for (int64_t i = tid; i < channel_size; i += blockDim.x) {
ComputeDataType x = static_cast<ComputeDataType>(in_c[i]);
ComputeDataType v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt_t * inv_s * v;
out_c[i] = static_cast<T>(round(v));
if (round_type == 0) {
x = bin_cnt_t * inv_s * x;
x = roundWithTiesToEven(x);
ComputeDataType max_bound = bin_cnt_t;
ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
x = x > max_bound ? max_bound : x;
x = x < min_bound ? min_bound : x;
out_c[i] = static_cast<T>(x);
} else {
ComputeDataType v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt_t * inv_s * v;
out_c[i] = static_cast<T>(round(v));
}
}
}
// ChannelClipAndQuantKernel for quant_axis is N
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxisN(
const T* in, const T* scale, const int bin_cnt, const int64_t n,
const int nScale, const int quant_stride, T* out) {
__global__ void ChannelClipAndQuantKernelQuantAxisN(const T *in,
const T *scale,
const int bin_cnt,
const int round_type,
const int64_t n,
const int nScale,
const int quant_stride,
T *out) {
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
using ComputeDataType = typename QuantizeDataType<T>::type;
ComputeDataType bin_cnt_t = static_cast<ComputeDataType>(bin_cnt);
......@@ -334,36 +390,50 @@ __global__ void ChannelClipAndQuantKernelQuantAxisN(
static_cast<ComputeDataType>(scale[(i / quant_stride) % nScale]);
ComputeDataType inv_s = inverse(s);
ComputeDataType x = static_cast<ComputeDataType>(in[i]);
ComputeDataType v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt_t * inv_s * v;
out[i] = static_cast<T>(round(v));
if (round_type == 0) {
x = bin_cnt_t * inv_s * x;
x = roundWithTiesToEven(x);
ComputeDataType max_bound = bin_cnt_t;
ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
x = x > max_bound ? max_bound : x;
x = x < min_bound ? min_bound : x;
out[i] = static_cast<T>(x);
} else {
ComputeDataType v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt_t * inv_s * v;
out[i] = static_cast<T>(round(v));
}
}
}
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
void operator()(const platform::CUDADeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
const int quant_axis,
framework::Tensor *out) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
int64_t num = in.numel();
auto in_dims = in.dims();
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
const T *in_data = in.data<T>();
const T *scale_data = scale.data<T>();
T *out_data = out->mutable_data<T>(ctx.GetPlace());
if (quant_axis == 0) {
int grid = in_dims[0];
int block = 1024;
ChannelClipAndQuantKernelQuantAxis0<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, in_dims[0], out_data);
in_data, scale_data, bin_cnt, round_type, num, in_dims[0], out_data);
} else {
int quant_stride = 1;
for (int i = quant_axis + 1; i < in_dims.size(); i++) {
......@@ -379,9 +449,15 @@ struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
const int64_t grid_size =
std::min(max_blocks, (num + block_size - 1) / block_size);
ChannelClipAndQuantKernelQuantAxisN<T><<<grid_size, block_size>>>(
in_data, scale_data, bin_cnt, num, in_dims[quant_axis], quant_stride,
out_data);
ChannelClipAndQuantKernelQuantAxisN<T>
<<<grid_size, block_size>>>(in_data,
scale_data,
bin_cnt,
round_type,
num,
in_dims[quant_axis],
quant_stride,
out_data);
}
}
};
......@@ -390,12 +466,14 @@ template struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext,
float>;
template <typename T>
__global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale,
const T* last_scale,
const int64_t* iter,
const int window_size, T* scale_arr,
T* out_scale, int* need_find_max,
int* out_size) {
__global__ void FindRangeAbsMaxAndFillArray(const T *cur_scale,
const T *last_scale,
const int64_t *iter,
const int window_size,
T *scale_arr,
T *out_scale,
int *need_find_max,
int *out_size) {
int it = iter[0];
int idx = it % window_size;
T removed = scale_arr[idx];
......@@ -414,45 +492,63 @@ __global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale,
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& cur_scale,
const framework::Tensor& last_scale,
const framework::Tensor& iter, const int window_size,
framework::Tensor* scales_arr, framework::Tensor* out_scale) {
void operator()(const platform::CUDADeviceContext &ctx,
const framework::Tensor &cur_scale,
const framework::Tensor &last_scale,
const framework::Tensor &iter,
const int window_size,
framework::Tensor *scales_arr,
framework::Tensor *out_scale) {
const auto gpu_place = ctx.GetPlace();
T* scale_arr = scales_arr->mutable_data<T>(gpu_place);
T* out_scale_data = out_scale->mutable_data<T>(gpu_place);
T *scale_arr = scales_arr->mutable_data<T>(gpu_place);
T *out_scale_data = out_scale->mutable_data<T>(gpu_place);
framework::Tensor need_find_max, out_size;
int* find_max = need_find_max.mutable_data<int>({1}, gpu_place);
int* out_size_data = out_size.mutable_data<int>({1}, gpu_place);
FindRangeAbsMaxAndFillArray<T><<<1, 1, 0, ctx.stream()>>>(
cur_scale.data<T>(), last_scale.data<T>(), iter.data<int64_t>(),
window_size, scale_arr, out_scale_data, find_max, out_size_data);
int *find_max = need_find_max.mutable_data<int>({1}, gpu_place);
int *out_size_data = out_size.mutable_data<int>({1}, gpu_place);
FindRangeAbsMaxAndFillArray<T>
<<<1, 1, 0, ctx.stream()>>>(cur_scale.data<T>(),
last_scale.data<T>(),
iter.data<int64_t>(),
window_size,
scale_arr,
out_scale_data,
find_max,
out_size_data);
int g_find_max;
memory::Copy(platform::CPUPlace(), &g_find_max, gpu_place, find_max,
sizeof(int), ctx.stream());
memory::Copy(platform::CPUPlace(),
&g_find_max,
gpu_place,
find_max,
sizeof(int),
ctx.stream());
ctx.Wait();
if (g_find_max) {
int len;
memory::Copy(platform::CPUPlace(), &len, gpu_place, out_size_data,
sizeof(int), ctx.stream());
memory::Copy(platform::CPUPlace(),
&len,
gpu_place,
out_size_data,
sizeof(int),
ctx.stream());
ctx.Wait();
FindAbsMaxFunctor<platform::CUDADeviceContext, T>()(ctx, scale_arr, len,
out_scale_data);
FindAbsMaxFunctor<platform::CUDADeviceContext, T>()(
ctx, scale_arr, len, out_scale_data);
}
}
};
template <typename T>
__global__ void FindMovingAverageAbsMaxKernel(const T* in_state,
const T* in_accum,
const T* cur_scale, const T rate,
T* out_state, T* out_accum,
T* out_scale) {
__global__ void FindMovingAverageAbsMaxKernel(const T *in_state,
const T *in_accum,
const T *cur_scale,
const T rate,
T *out_state,
T *out_accum,
T *out_scale) {
T state = rate * (*in_state) + T(1.0f);
T accum = rate * (*in_accum) + (*cur_scale);
*out_state = state;
......@@ -464,78 +560,119 @@ template struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in_accum,
const framework::Tensor& in_state, const T* cur_scale,
const float rate, framework::Tensor* out_state,
framework::Tensor* out_accum, framework::Tensor* out_scale) {
void operator()(const platform::CUDADeviceContext &ctx,
const framework::Tensor &in_accum,
const framework::Tensor &in_state,
const T *cur_scale,
const float rate,
framework::Tensor *out_state,
framework::Tensor *out_accum,
framework::Tensor *out_scale) {
const auto gpu_place = ctx.GetPlace();
T rate_t = static_cast<T>(rate);
T* out_state_data = out_state->mutable_data<T>(gpu_place);
T* out_accum_data = out_accum->mutable_data<T>(gpu_place);
T* out_scale_data = out_scale->mutable_data<T>(gpu_place);
FindMovingAverageAbsMaxKernel<T><<<1, 1, 0, ctx.stream()>>>(
in_state.data<T>(), in_accum.data<T>(), cur_scale, rate_t,
out_state_data, out_accum_data, out_scale_data);
T *out_state_data = out_state->mutable_data<T>(gpu_place);
T *out_accum_data = out_accum->mutable_data<T>(gpu_place);
T *out_scale_data = out_scale->mutable_data<T>(gpu_place);
FindMovingAverageAbsMaxKernel<T>
<<<1, 1, 0, ctx.stream()>>>(in_state.data<T>(),
in_accum.data<T>(),
cur_scale,
rate_t,
out_state_data,
out_accum_data,
out_scale_data);
}
};
// ChannelClipAndQuantDequantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis0(
const T* in, const T* scale, const int bin_cnt, const int n, const int c,
T* out) {
__global__ void ChannelClipAndQuantDequantKernelQuantAxis0(const T *in,
const T *scale,
const int bin_cnt,
const int round_type,
const int n,
const int c,
T *out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
const T *in_c = in + blockIdx.x * channel_size;
T *out_c = out + blockIdx.x * channel_size;
T s = scale[blockIdx.x];
T inv_s = inverse(s);
for (int i = tid; i < channel_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
if (round_type == 0) {
x = bin_cnt * inv_s * x;
x = roundWithTiesToEven(x);
T max_bound = bin_cnt;
T min_bound = -bin_cnt - static_cast<T>(1);
x = x > max_bound ? max_bound : x;
x = x < min_bound ? min_bound : x;
out_c[i] = (x * s) / bin_cnt;
} else {
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
}
}
}
// ChannelClipAndQuantDequantKernel for quant_axis is 1
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis1(
const T* in, const T* scale, const int bin_cnt, const int n, const int cin,
const int cout, T* out) {
__global__ void ChannelClipAndQuantDequantKernelQuantAxis1(const T *in,
const T *scale,
const int bin_cnt,
const int round_type,
const int n,
const int cin,
const int cout,
T *out) {
T s = scale[blockIdx.x % cout];
T inv_s = inverse(s);
int wh_size = n / (cin * cout);
const T* in_c = in + blockIdx.x * wh_size;
T* out_c = out + blockIdx.x * wh_size;
const T *in_c = in + blockIdx.x * wh_size;
T *out_c = out + blockIdx.x * wh_size;
for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
if (round_type == 0) {
x = bin_cnt * inv_s * x;
x = roundWithTiesToEven(x);
T max_bound = bin_cnt;
T min_bound = -bin_cnt - static_cast<T>(1);
x = x > max_bound ? max_bound : x;
x = x < min_bound ? min_bound : x;
out_c[i] = (x * s) / bin_cnt;
} else {
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
}
}
}
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
void operator()(const platform::CUDADeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
const int quant_axis,
framework::Tensor *out) {
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// conv2d_transpose and mul
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
quant_axis == 0 || quant_axis == 1,
true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
......@@ -543,23 +680,34 @@ struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
int num = in.numel();
auto in_dims = in.dims();
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
const T *in_data = in.data<T>();
const T *scale_data = scale.data<T>();
T *out_data = out->mutable_data<T>(ctx.GetPlace());
if (quant_axis == 0) {
int grid = in_dims[0];
int block = 1024;
ChannelClipAndQuantDequantKernelQuantAxis0<
T><<<grid, block, 0, ctx.stream()>>>(in_data, scale_data, bin_cnt,
num, in_dims[0], out_data);
ChannelClipAndQuantDequantKernelQuantAxis0<T>
<<<grid, block, 0, ctx.stream()>>>(in_data,
scale_data,
bin_cnt,
round_type,
num,
in_dims[0],
out_data);
} else if (quant_axis == 1) {
int grid = in_dims[0] * in_dims[1];
int block = 1024;
ChannelClipAndQuantDequantKernelQuantAxis1<
T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, in_dims[0], in_dims[1], out_data);
ChannelClipAndQuantDequantKernelQuantAxis1<T>
<<<grid, block, 0, ctx.stream()>>>(in_data,
scale_data,
bin_cnt,
round_type,
num,
in_dims[0],
in_dims[1],
out_data);
}
}
};
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
......@@ -33,97 +34,158 @@ inline HOSTDEVICE T inverse(T s) {
return s <= static_cast<T>(1e-30) ? one / (s + eps) : one / s;
}
template <typename T>
inline HOSTDEVICE T roundWithTiesToEven(T x) {
T xLower = floor(x);
T xUpper = ceil(x);
// x is in interval [xl,xu]. Choose closest of two bounds, breaking ties to
// even.
T dLower = x - xLower;
T dUpper = xUpper - x;
return static_cast<T>(
(dLower == dUpper ? fmod(xLower, 2.0F) == 0.0F : dLower < dUpper)
? xLower
: xUpper);
}
template <typename T>
class QuantTensorFunctor {
public:
explicit QuantTensorFunctor(const T bin_cnt, const T inv_s)
: bin_cnt_(bin_cnt), inv_s_(inv_s) {}
HOSTDEVICE T operator()(const T x) const {
T out = bin_cnt_ * inv_s_ * x;
out = roundWithTiesToEven(out);
T max_bound = bin_cnt_;
T min_bound = -bin_cnt_ - static_cast<T>(1);
out = out > max_bound ? max_bound : out;
out = out < min_bound ? min_bound : out;
return out;
}
private:
T bin_cnt_;
T inv_s_;
};
template <typename DeviceContext, typename T>
struct FindAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const T* in, const int num, T* out);
void operator()(const DeviceContext &ctx, const T *in, const int num, T *out);
};
template <typename DeviceContext, typename T>
struct ClipAndFakeQuantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
framework::Tensor* out);
void operator()(const DeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
framework::Tensor *out);
};
template <typename DeviceContext, typename T>
struct ClipAndFakeQuantDequantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
framework::Tensor* out);
void operator()(const DeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
int round_type,
framework::Tensor *out);
};
template <typename DeviceContext, typename T>
struct FindRangeAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& cur_scale,
const framework::Tensor& last_scale,
const framework::Tensor& iter, const int window_size,
framework::Tensor* scales_arr, framework::Tensor* out_scale);
void operator()(const DeviceContext &ctx,
const framework::Tensor &cur_scale,
const framework::Tensor &last_scale,
const framework::Tensor &iter,
const int window_size,
framework::Tensor *scales_arr,
framework::Tensor *out_scale);
};
template <typename DeviceContext, typename T>
struct FindChannelAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in_tensor,
const int quant_axis, T* out_abs_max);
void operator()(const DeviceContext &ctx,
const framework::Tensor &in_tensor,
const int quant_axis,
T *out_abs_max);
};
template <typename DeviceContext, typename T>
struct ChannelClipAndFakeQuantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
const int quant_axis, framework::Tensor* out);
void operator()(const DeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
const int round_type,
const int quant_axis,
framework::Tensor *out);
};
template <typename DeviceContext, typename T>
struct ChannelClipFakeQuantDequantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
const int quant_axis, framework::Tensor* out);
void operator()(const DeviceContext &ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
const int bin_cnt,
int round_type,
const int quant_axis,
framework::Tensor *out);
};
template <typename DeviceContext, typename T>
struct FindMovingAverageAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in_accum,
const framework::Tensor& in_state,
const framework::Tensor& cur_scale,
framework::Tensor* out_state, framework::Tensor* out_accum,
framework::Tensor* out_scale);
void operator()(const DeviceContext &ctx,
const framework::Tensor &in_accum,
const framework::Tensor &in_state,
const framework::Tensor &cur_scale,
framework::Tensor *out_state,
framework::Tensor *out_accum,
framework::Tensor *out_scale);
};
template <typename DeviceContext, typename T>
class FakeAbsMaxKernelBase : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_s = out_scale->mutable_data<T>(context.GetPlace());
void Compute(const framework::ExecutionContext &context) const override {
auto *in = context.Input<framework::Tensor>("X");
auto *out = context.Output<framework::Tensor>("Out");
auto *out_scale = context.Output<framework::Tensor>("OutScale");
T *out_s = out_scale->mutable_data<T>(context.GetPlace());
int bit_length = context.Attr<int>("bit_length");
int round_type = context.Attr<int>("round_type");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev_ctx = context.template device_context<DeviceContext>();
const T* in_data = in->data<T>();
auto &dev_ctx = context.template device_context<DeviceContext>();
const T *in_data = in->data<T>();
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in_data, in->numel(), out_s);
RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, out);
RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, round_type, out);
}
virtual ~FakeAbsMaxKernelBase() = default;
protected:
virtual void RunClipFunctor(const DeviceContext& dev_ctx,
const framework::Tensor& in,
const framework::Tensor& scale, int bin_cnt,
framework::Tensor* out) const = 0;
virtual void RunClipFunctor(const DeviceContext &dev_ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
int bin_cnt,
int round_type,
framework::Tensor *out) const = 0;
};
template <typename DeviceContext, typename T>
class FakeQuantizeAbsMaxKernel : public FakeAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, in, scale, bin_cnt,
out);
void RunClipFunctor(const DeviceContext &dev_ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
int bin_cnt,
int round_type,
framework::Tensor *out) const override {
ClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, in, scale, bin_cnt, round_type, out);
}
};
......@@ -131,37 +193,41 @@ template <typename DeviceContext, typename T>
class FakeQuantizeDequantizeAbsMaxKernel
: public FakeAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(dev_ctx, in, scale,
bin_cnt, out);
void RunClipFunctor(const DeviceContext &dev_ctx,
const framework::Tensor &in,
const framework::Tensor &scale,
int bin_cnt,
int round_type,
framework::Tensor *out) const override {
ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(
dev_ctx, in, scale, bin_cnt, round_type, out);
}
};
template <typename DeviceContext, typename T>
class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
void Compute(const framework::ExecutionContext &context) const override {
auto *in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
auto *out = context.Output<framework::Tensor>("Out");
auto *out_scale = context.Output<framework::Tensor>("OutScale");
out->mutable_data<T>(context.GetPlace());
int bit_length = context.Attr<int>("bit_length");
int round_type = context.Attr<int>("round_type");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
int quant_axis = context.Attr<int>("quant_axis");
bool is_test = context.Attr<bool>("is_test");
auto& dev_ctx = context.template device_context<DeviceContext>();
auto &dev_ctx = context.template device_context<DeviceContext>();
if (!is_test) {
T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
out_scale_data);
T *out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
FindChannelAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, *in, quant_axis, out_scale_data);
}
ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
dev_ctx, *in, *out_scale, bin_cnt, round_type, quant_axis, out);
}
};
......@@ -169,130 +235,147 @@ template <typename DeviceContext, typename T>
class FakeChannelWiseQuantizeDequantizeAbsMaxKernel
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
void Compute(const framework::ExecutionContext &context) const override {
auto *in = context.Input<framework::Tensor>("X");
auto *out = context.Output<framework::Tensor>("Out");
auto *out_scale = context.Output<framework::Tensor>("OutScale");
T *out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
auto &dev_ctx = context.template device_context<DeviceContext>();
out->mutable_data<T>(dev_ctx.GetPlace());
int bit_length = context.Attr<int>("bit_length");
int round_type = context.Attr<int>("round_type");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
int quant_axis = context.Attr<int>("quant_axis");
FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
out_scale_data);
FindChannelAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, *in, quant_axis, out_scale_data);
ChannelClipFakeQuantDequantFunctor<DeviceContext, T>()(
dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
dev_ctx, *in, *out_scale, bin_cnt, round_type, quant_axis, out);
}
};
template <typename DeviceContext, typename T>
class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* in_scale = context.Input<framework::Tensor>("InScale");
void Compute(const framework::ExecutionContext &context) const override {
auto *in = context.Input<framework::Tensor>("X");
auto *in_scale = context.Input<framework::Tensor>("InScale");
auto* out = context.Output<framework::Tensor>("Out");
auto *out = context.Output<framework::Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
bool is_test = context.Attr<bool>("is_test");
int bit_length = context.Attr<int>("bit_length");
int round_type = context.Attr<int>("round_type");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev_ctx = context.template device_context<DeviceContext>();
auto &dev_ctx = context.template device_context<DeviceContext>();
// testing
if (is_test) {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
bin_cnt, out);
ClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *in_scale, bin_cnt, round_type, out);
return;
}
// training
auto* out_scale = context.Output<framework::Tensor>("OutScale");
auto* out_scales = context.Output<framework::Tensor>("OutScales");
auto* iter = context.Input<framework::Tensor>("Iter");
auto *out_scale = context.Output<framework::Tensor>("OutScale");
auto *out_scales = context.Output<framework::Tensor>("OutScales");
auto *iter = context.Input<framework::Tensor>("Iter");
int window_size = context.Attr<int>("window_size");
out_scale->mutable_data<T>(context.GetPlace());
framework::Tensor cur_scale;
T* cur_scale_data = cur_scale.mutable_data<T>({1}, context.GetPlace());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
cur_scale_data);
FindRangeAbsMaxFunctor<DeviceContext, T>()(dev_ctx, cur_scale, *in_scale,
*iter, window_size, out_scales,
T *cur_scale_data = cur_scale.mutable_data<T>({1}, context.GetPlace());
FindAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, in->data<T>(), in->numel(), cur_scale_data);
FindRangeAbsMaxFunctor<DeviceContext, T>()(dev_ctx,
cur_scale,
*in_scale,
*iter,
window_size,
out_scales,
out_scale);
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
bin_cnt, out);
ClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *out_scale, bin_cnt, round_type, out);
}
};
template <typename DeviceContext, typename T>
class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* in_scale = context.Input<framework::Tensor>("InScale");
auto* out = context.Output<framework::Tensor>("Out");
void Compute(const framework::ExecutionContext &context) const override {
auto *in = context.Input<framework::Tensor>("X");
auto *in_scale = context.Input<framework::Tensor>("InScale");
auto *out = context.Output<framework::Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
bool is_test = context.Attr<bool>("is_test");
int bit_length = context.Attr<int>("bit_length");
int round_type = context.Attr<int>("round_type");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev_ctx = context.template device_context<DeviceContext>();
auto &dev_ctx = context.template device_context<DeviceContext>();
// testing
if (is_test) {
RunClipFunctor(dev_ctx, *in, *in_scale, bin_cnt, out);
RunClipFunctor(dev_ctx, *in, *in_scale, bin_cnt, round_type, out);
return;
}
// training
auto* in_accum = context.Input<framework::Tensor>("InAccum");
auto* in_state = context.Input<framework::Tensor>("InState");
auto *in_accum = context.Input<framework::Tensor>("InAccum");
auto *in_state = context.Input<framework::Tensor>("InState");
auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
T* cur_scale_data = static_cast<T*>(cur_scale->ptr());
T *cur_scale_data = static_cast<T *>(cur_scale->ptr());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
cur_scale_data);
FindAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, in->data<T>(), in->numel(), cur_scale_data);
auto* out_state = context.Output<framework::Tensor>("OutState");
auto* out_accum = context.Output<framework::Tensor>("OutAccum");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
auto *out_state = context.Output<framework::Tensor>("OutState");
auto *out_accum = context.Output<framework::Tensor>("OutAccum");
auto *out_scale = context.Output<framework::Tensor>("OutScale");
out_state->mutable_data<T>(context.GetPlace());
out_accum->mutable_data<T>(context.GetPlace());
out_scale->mutable_data<T>(context.GetPlace());
float moving_rate = context.Attr<float>("moving_rate");
FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
out_accum, out_scale);
FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(dev_ctx,
*in_accum,
*in_state,
cur_scale_data,
moving_rate,
out_state,
out_accum,
out_scale);
RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, out);
RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, round_type, out);
}
virtual ~FakeMovingAverageAbsMaxKernelBase() = default;
protected:
virtual void RunClipFunctor(const DeviceContext& dev_ctx,
const framework::Tensor& in,
const framework::Tensor& in_scale, int bin_cnt,
framework::Tensor* out) const = 0;
virtual void RunClipFunctor(const DeviceContext &dev_ctx,
const framework::Tensor &in,
const framework::Tensor &in_scale,
int bin_cnt,
int round_type,
framework::Tensor *out) const = 0;
};
template <typename DeviceContext, typename T>
class FakeQuantizeMovingAverageAbsMaxKernel
: public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& in_scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale, bin_cnt,
out);
void RunClipFunctor(const DeviceContext &dev_ctx,
const framework::Tensor &in,
const framework::Tensor &in_scale,
int bin_cnt,
int round_type,
framework::Tensor *out) const override {
ClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, in, in_scale, bin_cnt, round_type, out);
}
};
......@@ -300,23 +383,26 @@ template <typename DeviceContext, typename T>
class FakeQuantizeDequantizeMovingAverageAbsMaxKernel
: public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& in_scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale,
bin_cnt, out);
void RunClipFunctor(const DeviceContext &dev_ctx,
const framework::Tensor &in,
const framework::Tensor &in_scale,
int bin_cnt,
int round_type,
framework::Tensor *out) const override {
ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(
dev_ctx, in, in_scale, bin_cnt, round_type, out);
}
};
template <typename DeviceContext, typename T>
class MovingAverageAbsMaxScaleKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto& dev_ctx = context.template device_context<DeviceContext>();
void Compute(const framework::ExecutionContext &context) const override {
auto *in = context.Input<framework::Tensor>("X");
auto &dev_ctx = context.template device_context<DeviceContext>();
if (context.HasOutput("Out")) {
auto* out = context.Output<framework::Tensor>("Out");
auto *out = context.Output<framework::Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
framework::TensorCopy(*in, context.GetPlace(), dev_ctx, out);
}
......@@ -328,40 +414,46 @@ class MovingAverageAbsMaxScaleKernel : public framework::OpKernel<T> {
}
// training
auto* in_accum = context.Input<framework::Tensor>("InAccum");
auto* in_state = context.Input<framework::Tensor>("InState");
auto *in_accum = context.Input<framework::Tensor>("InAccum");
auto *in_state = context.Input<framework::Tensor>("InState");
auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
T* cur_scale_data = static_cast<T*>(cur_scale->ptr());
T *cur_scale_data = static_cast<T *>(cur_scale->ptr());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
cur_scale_data);
FindAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, in->data<T>(), in->numel(), cur_scale_data);
auto* out_state = context.Output<framework::Tensor>("OutState");
auto* out_accum = context.Output<framework::Tensor>("OutAccum");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
auto *out_state = context.Output<framework::Tensor>("OutState");
auto *out_accum = context.Output<framework::Tensor>("OutAccum");
auto *out_scale = context.Output<framework::Tensor>("OutScale");
out_state->mutable_data<T>(context.GetPlace());
out_accum->mutable_data<T>(context.GetPlace());
out_scale->mutable_data<T>(context.GetPlace());
float moving_rate = context.Attr<float>("moving_rate");
FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
out_accum, out_scale);
FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(dev_ctx,
*in_accum,
*in_state,
cur_scale_data,
moving_rate,
out_state,
out_accum,
out_scale);
}
};
template <typename DeviceContext, typename T>
class StrightThroughEstimatorGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* d_out =
void Compute(const framework::ExecutionContext &context) const override {
auto *d_out =
context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto x_grad_name = framework::GradVarName("X");
auto* d_x = context.Output<framework::LoDTensor>(x_grad_name);
PADDLE_ENFORCE_NOT_NULL(d_x, platform::errors::PreconditionNotMet(
"StrightThroughEstimatorGradKernel "
"doesn't have the output named %s.",
x_grad_name));
auto *d_x = context.Output<framework::LoDTensor>(x_grad_name);
PADDLE_ENFORCE_NOT_NULL(d_x,
platform::errors::PreconditionNotMet(
"StrightThroughEstimatorGradKernel "
"doesn't have the output named %s.",
x_grad_name));
// Initialize dx as same as d_out
d_x->mutable_data<T>(context.GetPlace());
......
......@@ -10,9 +10,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/quantize_linear_op.h"
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/transform.h"
......@@ -24,14 +26,17 @@ namespace operators {
template <typename T>
struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor* scale,
T max_range, const int quant_axis, framework::Tensor* out) {
void operator()(const platform::CPUDeviceContext &dev_ctx,
const framework::Tensor *in,
const framework::Tensor *scale,
T max_range,
const int quant_axis,
framework::Tensor *out) {
// Dequant op is before quantized op
// Dequantize the weight of quantized op
auto in_dims = in->dims();
const int64_t channel = in_dims[quant_axis];
const T* scale_factor = scale->data<T>();
const T *scale_factor = scale->data<T>();
if (quant_axis == 0) {
for (int64_t i = 0; i < channel; i++) {
T s = scale_factor[i];
......@@ -39,7 +44,7 @@ struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
auto& dev = *dev_ctx.eigen_device();
auto &dev = *dev_ctx.eigen_device();
out_e.device(dev) = in_e * s / max_range;
}
} else if (quant_axis == 1) {
......@@ -49,12 +54,12 @@ struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
}
int64_t step_i = in->numel() / out_iter;
int64_t step_j = in->numel() / (out_iter * channel);
auto* in_data = in->data<T>();
auto* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
auto *in_data = in->data<T>();
auto *out_data = out->mutable_data<T>(dev_ctx.GetPlace());
for (int64_t i = 0; i < out_iter; i++) {
for (int64_t j = 0; j < channel; j++) {
auto* cur_in = in_data + i * step_i + j * step_j;
auto* cur_out = out_data + i * step_i + j * step_j;
auto *cur_in = in_data + i * step_i + j * step_j;
auto *cur_out = out_data + i * step_i + j * step_j;
T s = scale_factor[j];
for (int64_t k = 0; k < step_j; k++) {
*cur_out = (*cur_in) * s / max_range;
......@@ -67,19 +72,17 @@ struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
}
};
template struct DequantizeFunctor<platform::CPUDeviceContext, float>;
template struct DequantizeFunctor<platform::CPUDeviceContext, double>;
template struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, float>;
template struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, double>;
class QuantizeLinearOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "QuantizeLinear");
OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "QuantizeLinear");
OP_INOUT_CHECK(ctx->HasInput("ZeroPoint"), "Input", "ZeroPoint",
"QuantizeLinear");
OP_INOUT_CHECK(
ctx->HasInput("ZeroPoint"), "Input", "ZeroPoint", "QuantizeLinear");
OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "QuantizeLinear");
ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
int quant_axis = ctx->Attrs().Get<int>("quant_axis");
......@@ -95,7 +98,7 @@ class QuantizeLinearOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
......@@ -116,9 +119,10 @@ class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
"For conv2d, depthwise_conv2d, conv2d_transpose "
"and mul, the quant_axis is equal to the cout axis.")
.SetDefault(0)
.AddCustomChecker([](const int& quant_axis) {
.AddCustomChecker([](const int &quant_axis) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1 || quant_axis == -1, true,
quant_axis == 0 || quant_axis == 1 || quant_axis == -1,
true,
platform::errors::InvalidArgument(
"'quant_axis' should be 0 or 1, but "
"the received is %d",
......@@ -126,13 +130,32 @@ class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddAttr<int>("bit_length", "(int, default 8)")
.SetDefault(8)
.AddCustomChecker([](const int& bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
.AddCustomChecker([](const int &bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
true,
platform::errors::InvalidArgument(
"'bit_length' should be between 1 and 16, but "
"the received is %d",
bit_length));
});
AddAttr<int>(
"round_type",
"(int, default 0) The round type of fp32 to int."
"0: rounding to nearest ties to even. Eg: round(1.5)=2, round(2.5)=2"
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3")
.SetDefault(0)
.AddCustomChecker([](const int &round_type) {
PADDLE_ENFORCE_EQ(
round_type == 0 || round_type == 1,
true,
platform::errors::InvalidArgument(
"'round_type' should be 0 or 1, 0 rounding to "
"nearest ties to even and 1 is rounding to nearest "
"ties away from zero.but the received is %d",
round_type));
})
.AsExtra();
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
......@@ -156,14 +179,18 @@ namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(
quantize_linear, ops::QuantizeLinearOp, ops::QuantizeLinearOpMaker,
quantize_linear,
ops::QuantizeLinearOp,
ops::QuantizeLinearOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(quantize_linear, ops::QuantizeLinearKernel<CPU, float>);
REGISTER_OPERATOR(
dequantize_linear, ops::QuantizeLinearOp, ops::QuantizeLinearOpMaker,
dequantize_linear,
ops::QuantizeLinearOp,
ops::QuantizeLinearOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
......
......@@ -29,9 +29,13 @@ namespace operators {
template <typename DeviceContext, typename T>
struct ChannelDequantizeFunctorV2 {
void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in,
const framework::Tensor** scales, const int scale_num,
T max_range, const int quant_axis, framework::Tensor* out);
void operator()(const DeviceContext& dev_ctx,
const framework::Tensor* in,
const framework::Tensor** scales,
const int scale_num,
T max_range,
const int quant_axis,
framework::Tensor* out);
};
template <typename DeviceContext, typename T>
......@@ -44,6 +48,7 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
auto* out = context.Output<framework::Tensor>("Y");
out->mutable_data<T>(context.GetPlace());
int bit_length = context.Attr<int>("bit_length");
int round_type = context.Attr<int>("round_type");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
int quant_axis = context.Attr<int>("quant_axis");
bool is_test = context.Attr<bool>("is_test");
......@@ -53,25 +58,25 @@ class QuantizeLinearKernel : public framework::OpKernel<T> {
if (!is_test) {
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_s = out_scale->mutable_data<T>(context.GetPlace());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(),
in->numel(), out_s);
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
bin_cnt, out);
FindAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, in->data<T>(), in->numel(), out_s);
ClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *out_scale, bin_cnt, round_type, out);
} else {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
bin_cnt, out);
ClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *in_scale, bin_cnt, round_type, out);
}
} else {
if (!is_test) {
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
out_scale_data);
FindChannelAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, *in, quant_axis, out_scale_data);
ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
dev_ctx, *in, *out_scale, bin_cnt, round_type, quant_axis, out);
} else {
ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *in_scale, bin_cnt, quant_axis, out);
dev_ctx, *in, *in_scale, bin_cnt, round_type, quant_axis, out);
}
}
}
......@@ -87,7 +92,8 @@ class DeQuantizeLinearKernel : public framework::OpKernel<T> {
auto in_tmp = phi::Cast<T>(
static_cast<const typename paddle::framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
*in, experimental::CppTypeToDataType<D>::Type());
*in,
experimental::CppTypeToDataType<D>::Type());
auto* scale = context.Input<framework::Tensor>("Scale");
auto* out = context.Output<framework::Tensor>("Y");
......@@ -97,16 +103,18 @@ class DeQuantizeLinearKernel : public framework::OpKernel<T> {
if (quant_axis < 0) {
float max_range = (std::pow(2, bit_length - 1) - 1);
DequantizeFunctor<DeviceContext, D>()(dev_ctx, &in_tmp, scale,
static_cast<D>(max_range), out);
DequantizeFunctor<DeviceContext, D>()(
dev_ctx, &in_tmp, scale, static_cast<D>(max_range), out);
} else {
PADDLE_ENFORCE_EQ(
scale->numel(), in_tmp.dims()[quant_axis],
scale->numel(),
in_tmp.dims()[quant_axis],
platform::errors::PreconditionNotMet(
"The number of first scale values must be the same with "
"quant_axis dimension value of Input(X) when the `scale` has "
"only one element, but %ld != %ld here.",
scale->numel(), in_tmp.dims()[quant_axis]));
scale->numel(),
in_tmp.dims()[quant_axis]));
int max_range = (std::pow(2, bit_length - 1) - 1);
ChannelDequantizeFunctorV2<DeviceContext, D>()(
......
......@@ -20,26 +20,31 @@ import logging
import paddle.fluid as fluid
from ....log_helper import get_logger
from .utils import load_variable_data, set_variable_data, stable_sigmoid, quant_tensor, dequant_tensor, _channelwise_quant_axis1_ops, calculate_quant_cos_error
from .utils import load_variable_data, set_variable_data, stable_sigmoid, quant_tensor, dequant_tensor, _channelwise_quant_axis1_ops, calculate_quant_cos_error, bias_correction_w
_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
_logger = get_logger(__name__,
logging.INFO,
fmt='%(asctime)s-%(levelname)s: %(message)s')
GAMMA = -0.1
ZETA = 1.1
def compute_soft_rounding(alpha_v):
return fluid.layers.clip(
fluid.layers.sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, min=0, max=1)
return fluid.layers.clip(fluid.layers.sigmoid(alpha_v) * (ZETA - GAMMA) +
GAMMA,
min=0,
max=1)
def compute_soft_rounding_np(alpha_v):
return np.clip(
stable_sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, a_min=0, a_max=1)
return np.clip(stable_sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA,
a_min=0,
a_max=1)
class AdaRoundLoss(object):
def __init__(self, reg_param=0.01, default_beta_range=(20, 2)):
self.default_reg_param = reg_param
self.default_beta_range = default_beta_range
......@@ -48,26 +53,29 @@ class AdaRoundLoss(object):
square_cost = fluid.layers.square_error_cost(ada_quantized_output,
orig_output)
recon_loss = fluid.layers.reduce_mean(
fluid.layers.reduce_sum(
square_cost, dim=-1))
fluid.layers.reduce_sum(square_cost, dim=-1))
return recon_loss
def compute_round_loss(self, alpha_v, warm_start, beta):
def round_loss_fn():
# compute rectified sigmoid of parameter 'alpha' which maps it between zero and one
h_v = compute_soft_rounding(alpha_v)
# calculate regularization term - which ensures parameter to converge to exactly zeros and ones
# at the end of optimization
reg_term = fluid.layers.reduce_sum(-fluid.layers.pow(
fluid.layers.abs(2 * h_v - 1), factor=beta) + 1)
reg_term = fluid.layers.reduce_sum(
-fluid.layers.pow(fluid.layers.abs(2 * h_v - 1), factor=beta) +
1)
# calculate the rounding loss
round_loss = self.default_reg_param * reg_term
return round_loss
round_loss = fluid.layers.cond(warm_start, lambda: fluid.layers.fill_constant(shape=[1], dtype='float32', value=0.0), round_loss_fn)
round_loss = fluid.layers.cond(
warm_start, lambda: fluid.layers.fill_constant(
shape=[1], dtype='float32', value=0.0), round_loss_fn)
return round_loss
......@@ -80,15 +88,16 @@ class AdaRoundLoss(object):
warm_start_end_iter = warm_start * max_iter
# compute relative iteration of current iteration
rel_iter = (cur_iter - warm_start_end_iter) / (
max_iter - warm_start_end_iter)
beta = end_beta + 0.5 * (start_beta - end_beta) * (1 + np.cos(rel_iter *
np.pi))
rel_iter = (cur_iter - warm_start_end_iter) / (max_iter -
warm_start_end_iter)
beta = end_beta + 0.5 * (start_beta -
end_beta) * (1 + np.cos(rel_iter * np.pi))
return beta
class AdaRound(object):
def __init__(self,
scale,
weight_tensor,
......@@ -145,10 +154,9 @@ class AdaRound(object):
h_alpha = compute_soft_rounding_np(np_alpha)
# Scale the tensor
tensor_scale = quant_tensor(
self.ori_weight_tensor.copy(),
self.scale,
quant_axis=self.quant_axis)
tensor_scale = quant_tensor(self.ori_weight_tensor.copy(),
self.scale,
quant_axis=self.quant_axis)
weight_tensor = np.floor(tensor_scale)
......@@ -160,10 +168,10 @@ class AdaRound(object):
weight_tensor_quant = self._calculate_quant_weight()
# Dequantize the tensor
weight_tensor_dequant = dequant_tensor(
weight_tensor_quant + self.offset,
self.scale,
quant_axis=self.quant_axis)
weight_tensor_dequant = dequant_tensor(weight_tensor_quant +
self.offset,
self.scale,
quant_axis=self.quant_axis)
return weight_tensor_dequant
def update_final_weights(self):
......@@ -171,10 +179,10 @@ class AdaRound(object):
return weight_tensor_quant
def get_loss(self, beta, warm_start, adaround_out_tensor, orig_out_tensor):
round_loss = self.adaround_loss.compute_round_loss(self.alpha_v,
warm_start, beta)
recon_loss = self.adaround_loss.compute_recon_loss(adaround_out_tensor,
orig_out_tensor)
round_loss = self.adaround_loss.compute_round_loss(
self.alpha_v, warm_start, beta)
recon_loss = self.adaround_loss.compute_recon_loss(
adaround_out_tensor, orig_out_tensor)
loss = round_loss + recon_loss
losses = {
'loss': loss,
......@@ -201,6 +209,7 @@ def run_adaround(data_loader,
scale_dict,
num_iterations=1000,
lr=0.001,
bias_correction=False,
fast_mode=True):
fetch_op_name = fetch_list[0].name
final_weight_tensor_quant_dict = {}
......@@ -226,29 +235,29 @@ def run_adaround(data_loader,
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
# initialize adaround
adaround = AdaRound(
scale,
weight_var_tensor,
scope=scope,
weight_var_name=weight_var_name,
weight_op_type=weight_op_type,
num_iterations=num_iterations)
orig_out_tensor = fluid.data(
name='orig_out_tensor',
shape=fp32_fetch_list.shape,
dtype='float32')
adaround_out_tensor = fluid.data(
name='adaround_out_tensor',
shape=fp32_fetch_list.shape,
dtype='float32')
beta_tensor = fluid.data(
name='beta', shape=[1], dtype='float32')
warm_start_tensor = fluid.data(
name='warm_start', shape=[1], dtype='bool')
train_fetches_loss = adaround.get_loss(
beta_tensor, warm_start_tensor, adaround_out_tensor,
orig_out_tensor)
adaround = AdaRound(scale,
weight_var_tensor,
scope=scope,
weight_var_name=weight_var_name,
weight_op_type=weight_op_type,
num_iterations=num_iterations)
orig_out_tensor = fluid.data(name='orig_out_tensor',
shape=fp32_fetch_list.shape,
dtype='float32')
adaround_out_tensor = fluid.data(name='adaround_out_tensor',
shape=fp32_fetch_list.shape,
dtype='float32')
beta_tensor = fluid.data(name='beta',
shape=[1],
dtype='float32')
warm_start_tensor = fluid.data(name='warm_start',
shape=[1],
dtype='bool')
train_fetches_loss = adaround.get_loss(beta_tensor,
warm_start_tensor,
adaround_out_tensor,
orig_out_tensor)
optimizer = fluid.optimizer.Adam(learning_rate=lr)
loss = train_fetches_loss['loss']
optimizer.minimize(loss)
......@@ -291,16 +300,23 @@ def run_adaround(data_loader,
fetch_list=[v.name for v in train_fetches_loss.values()],
return_numpy=True)
_logger.info(
"Iter {:d}, lr {:.5f}, loss {:.5f}, loss_round {:.5f}, loss_recon {:.5f}, time {:.5f}s".
format(i, lr,
np.mean(out[0]),
np.mean(out[1]),
np.mean(out[2]), start_time - prev_start_time))
"Iter {:d}, lr {:.5f}, loss {:.5f}, loss_round {:.5f}, loss_recon {:.5f}, time {:.5f}s"
.format(i, lr, np.mean(out[0]), np.mean(out[1]),
np.mean(out[2]), start_time - prev_start_time))
sys.stdout.flush()
if i == num_iterations:
break
final_weight_tensor_quant_dict[
weight_var_name] = adaround.update_final_weights()
if bias_correction:
final_weight_tensor_quant_dict[weight_var_name] = bias_correction_w(
weight_var_tensor,
final_weight_tensor_quant_dict[weight_var_name],
scale,
adaround.quant_axis,
weight_bits=adaround.weight_bits)
del adaround
# update adarounded calibrated weights
......
......@@ -36,8 +36,9 @@ from . import utils
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
_logger = get_logger(__name__,
logging.INFO,
fmt='%(asctime)s-%(levelname)s: %(message)s')
def _all_persistable_var_names(program):
......@@ -88,7 +89,8 @@ def _apply_pass(scope,
cpp_graph.set_not_owned('__param_scope__', scope)
if attrs:
assert attr_values and len(attrs) == len(
attr_values), "Different number of pass attributes and their values."
attr_values
), "Different number of pass attributes and their values."
for attr, value in zip(attrs, attr_values):
ir_pass.set(attr, value)
ir_pass.apply(cpp_graph)
......@@ -180,7 +182,8 @@ class PostTrainingQuantization(object):
"mul"].
round_type(str, optional): The method of converting the quantized weights
value float->int. Currently supports ['round', 'adaround'] methods.
Default is `round`, which is rounding nearest to the nearest whole number.
Default is `round`, which is rounding nearest to the integer.
'adaround' is refer to https://arxiv.org/abs/2004.10568.
learning_rate(float, optional): The learning rate of adaround method.
is_full_quantized(bool, optional): If set is_full_quantized as True,
apply quantization to all supported quantizable op type. If set
......@@ -364,7 +367,8 @@ class PostTrainingQuantization(object):
batch_id = 0
with tqdm(
total=self._batch_nums,
bar_format='Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
bar_format=
'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for data in self._data_loader():
self._executor.run(program=self._program,
......@@ -380,10 +384,10 @@ class PostTrainingQuantization(object):
self._init_sampling_act_histogram()
batch_id = 0
with tqdm(
total=self._batch_nums,
bar_format='Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
with tqdm(total=self._batch_nums,
bar_format=
'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for data in self._data_loader():
self._executor.run(program=self._program,
feed=data,
......@@ -446,18 +450,18 @@ class PostTrainingQuantization(object):
scale_dict = self._quantized_var_threshold
else:
scale_dict = self._quantized_threshold
run_adaround(
self._data_loader,
self._program,
self._fetch_list,
self._executor,
self._scope,
self._place,
self._quantized_op_pairs,
self._weight_op_pairs,
scale_dict,
num_iterations=self._batch_nums,
lr=self._learning_rate)
run_adaround(self._data_loader,
self._program,
self._fetch_list,
self._executor,
self._scope,
self._place,
self._quantized_op_pairs,
self._weight_op_pairs,
scale_dict,
num_iterations=self._batch_nums,
bias_correction=self._bias_correction,
lr=self._learning_rate)
def save_quantized_model(self,
save_model_path,
......@@ -478,15 +482,14 @@ class PostTrainingQuantization(object):
None
'''
clip_extra = True if self._onnx_format else False
io.save_inference_model(
dirname=save_model_path,
model_filename=model_filename,
params_filename=params_filename,
feeded_var_names=self._feed_list,
target_vars=self._fetch_list,
executor=self._executor,
main_program=self._program,
clip_extra=clip_extra)
io.save_inference_model(dirname=save_model_path,
model_filename=model_filename,
params_filename=params_filename,
feeded_var_names=self._feed_list,
target_vars=self._fetch_list,
executor=self._executor,
main_program=self._program,
clip_extra=clip_extra)
_logger.info("The quantized model is saved in " + save_model_path)
def _load_model_data(self):
......@@ -508,17 +511,18 @@ class PostTrainingQuantization(object):
if self._data_loader is not None:
return
self._data_loader = io.DataLoader.from_generator(
feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
capacity=3 *
self._batch_size,
iterable=True)
if self._sample_generator is not None:
self._data_loader.set_sample_generator(
self._sample_generator,
batch_size=self._batch_size,
drop_last=True,
places=self._place)
self._data_loader.set_sample_generator(self._sample_generator,
batch_size=self._batch_size,
drop_last=True,
places=self._place)
elif self._batch_generator is not None:
self._data_loader.set_batch_generator(
self._batch_generator, places=self._place)
self._data_loader.set_batch_generator(self._batch_generator,
places=self._place)
def _optimize_fp32_model(self):
'''
......@@ -569,12 +573,10 @@ class PostTrainingQuantization(object):
" is not supported for quantization.")
# For quantized ops, sample inputs and outputs
if op_type in self._quantizable_op_type:
collect_var_name(
utils._get_op_input_var_names(op),
persistable_var_names, op_type)
collect_var_name(
utils._get_op_output_var_names(op),
persistable_var_names, op_type)
collect_var_name(utils._get_op_input_var_names(op),
persistable_var_names, op_type)
collect_var_name(utils._get_op_output_var_names(op),
persistable_var_names, op_type)
# collect quanted op output var name
for out_var_name in utils._get_op_output_var_names(op):
for in_var_name in utils._get_op_input_var_names(op):
......@@ -583,9 +585,8 @@ class PostTrainingQuantization(object):
in_var_name] = out_var_name
# For other op, only sample output scale
elif op_type in self._out_scale_op_list:
collect_var_name(
utils._get_op_output_var_names(op),
persistable_var_names, op_type)
collect_var_name(utils._get_op_output_var_names(op),
persistable_var_names, op_type)
def _set_activation_persistable(self):
'''
......@@ -655,9 +656,14 @@ class PostTrainingQuantization(object):
scale = s * abs_max_value
s += 0.02
bins = 2**(self._activation_bits - 1) - 1
quant_dequant_var = np.round(
np.clip(var_tensor, 0.0, scale) / scale *
bins) / bins * scale
if self._onnx_format:
quant_var = np.clip(np.round(var_tensor / scale * bins),
-bins - 1, bins)
quant_dequant_var = quant_var / bins * scale
else:
quant_dequant_var = np.round(
np.clip(var_tensor, 0.0, scale) / scale *
bins) / bins * scale
mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
if mse_loss <= self._best_calibration_loss[var_name]:
self._best_calibration_loss[var_name] = mse_loss
......@@ -694,9 +700,14 @@ class PostTrainingQuantization(object):
scale = s * abs_max_value
s += 0.02
bins = 2**(self._activation_bits - 1) - 1
quant_dequant_var = np.round(
np.clip(var_tensor, 0.0, scale) / scale *
bins) / bins * scale
if self._onnx_format:
quant_var = np.clip(np.round(var_tensor / scale * bins),
-bins - 1, bins)
quant_dequant_var = quant_var / bins * scale
else:
quant_dequant_var = np.round(
np.clip(var_tensor, 0.0, scale) / scale *
bins) / bins * scale
emd_loss = np.abs(
np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
np.std(var_tensor) - np.std(quant_dequant_var))
......@@ -846,8 +857,9 @@ class PostTrainingQuantization(object):
if var_name not in self._sampling_act_histogram:
min_val = self._sampling_act_abs_min_max[var_name][0]
max_val = self._sampling_act_abs_min_max[var_name][1]
hist, hist_edeges = np.histogram(
[], bins=self._histogram_bins, range=(min_val, max_val))
hist, hist_edeges = np.histogram([],
bins=self._histogram_bins,
range=(min_val, max_val))
self._sampling_act_histogram[var_name] = [hist, hist_edeges]
def _calculate_kl_hist_threshold(self):
......@@ -951,18 +963,11 @@ class PostTrainingQuantization(object):
else:
scale_dict = self._quantized_threshold
for key, val in scale_dict.items():
utils.set_variable_data(
self._scope,
self._place,
key + ".scale",
np.array(
[val], dtype=np.float32))
utils.set_variable_data(
self._scope,
self._place,
key + ".quant_dequant.scale",
np.array(
[val], dtype=np.float32))
utils.set_variable_data(self._scope, self._place, key + ".scale",
np.array([val], dtype=np.float32))
utils.set_variable_data(self._scope, self._place,
key + ".quant_dequant.scale",
np.array([val], dtype=np.float32))
if not self._onnx_format:
# apply QuantizationFreezePass, and obtain the final quant model
......@@ -1038,8 +1043,8 @@ class PostTrainingQuantization(object):
for block_id in range(len(self._program.blocks)):
for op in self._program.blocks[block_id].ops:
if op.type in (
self._quantizable_op_type + self._out_scale_op_list):
if op.type in (self._quantizable_op_type +
self._out_scale_op_list):
out_var_names = utils._get_op_output_var_names(op)
for var_name in out_var_names:
analysis_and_save_info(op, var_name)
......@@ -1175,10 +1180,11 @@ class WeightQuantization(object):
if generate_test_model:
test_model_dir = os.path.join(save_model_dir, "test_model")
self._quantize_weight_to_int(
test_model_dir, save_model_filename, save_params_filename,
quantizable_op_type, weight_bits, weight_quantize_type, True,
threshold_rate)
self._quantize_weight_to_int(test_model_dir, save_model_filename,
save_params_filename,
quantizable_op_type, weight_bits,
weight_quantize_type, True,
threshold_rate)
def convert_weight_to_fp16(self, save_model_dir):
"""
......@@ -1216,16 +1222,17 @@ class WeightQuantization(object):
if self._params_filename is not None:
save_var_map[new_var.name] = new_var
else:
save_file_path = os.path.join(
os.path.normpath(save_model_dir), new_var.name)
save_block.append_op(
type='save',
inputs={'X': [new_var]},
outputs={},
attrs={
'file_path': os.path.normpath(save_file_path),
'save_as_fp16': True
})
save_file_path = os.path.join(os.path.normpath(save_model_dir),
new_var.name)
save_block.append_op(type='save',
inputs={'X': [new_var]},
outputs={},
attrs={
'file_path':
os.path.normpath(save_file_path),
'save_as_fp16':
True
})
if self._params_filename is not None:
save_var_list = []
......@@ -1237,14 +1244,15 @@ class WeightQuantization(object):
name=unique_name.generate("saved_params"))
saved_params_var.desc.set_persistable(True)
save_path = os.path.join(
os.path.normpath(save_model_dir), self._params_filename)
save_block.append_op(
type='save_combine',
inputs={'X': save_var_list},
outputs={'Y': saved_params_var},
attrs={'file_path': save_path,
'save_as_fp16': True})
save_path = os.path.join(os.path.normpath(save_model_dir),
self._params_filename)
save_block.append_op(type='save_combine',
inputs={'X': save_var_list},
outputs={'Y': saved_params_var},
attrs={
'file_path': save_path,
'save_as_fp16': True
})
save_program._sync_with_cpp()
exe.run(save_program)
......@@ -1293,14 +1301,13 @@ class WeightQuantization(object):
self._weight_channel_wise_abs_max_quantization(
scope, place, weight_bits, op, var_name, for_test)
io.save_inference_model(
dirname=save_model_dir,
feeded_var_names=feed_list,
target_vars=fetch_list,
executor=exe,
main_program=program,
model_filename=save_model_filename,
params_filename=save_params_filename)
io.save_inference_model(dirname=save_model_dir,
feeded_var_names=feed_list,
target_vars=fetch_list,
executor=exe,
main_program=program,
model_filename=save_model_filename,
params_filename=save_params_filename)
def _weight_abs_max_quantization(self, scope, place, weight_bits,
threshold_rate, op, var_name, for_test):
......@@ -1339,8 +1346,9 @@ class WeightQuantization(object):
op._set_attr(var_name + "_quant_scale", [scale]) # Save as list
op._set_attr("with_quant_attr", True)
def _weight_channel_wise_abs_max_quantization(
self, scope, place, weight_bits, op, var_name, for_test):
def _weight_channel_wise_abs_max_quantization(self, scope, place,
weight_bits, op, var_name,
for_test):
'''
Use channel_wise_abs_max method to quantize weight.
'''
......@@ -1390,8 +1398,8 @@ class WeightQuantization(object):
and quantize the weights.
'''
scales = []
quantized_weight_data = np.zeros_like(
weight_data, dtype=save_weight_dtype)
quantized_weight_data = np.zeros_like(weight_data,
dtype=save_weight_dtype)
channel_num = weight_data.shape[0]
for i in range(channel_num):
scale = np.max(np.abs(weight_data[i])) / quantize_range
......@@ -1404,8 +1412,8 @@ class WeightQuantization(object):
'''
For conv2d and depthwise_conv2d, dequantize the weights to fp32.
'''
dequantized_weight_data = np.zeros_like(
quantized_weight_data, dtype=np.float32)
dequantized_weight_data = np.zeros_like(quantized_weight_data,
dtype=np.float32)
for i in range(len(scales)):
dequantized_weight_data[i] = \
(quantized_weight_data[i] * scales[i]).astype(np.float32)
......@@ -1418,8 +1426,8 @@ class WeightQuantization(object):
and quantize the weights.
'''
scales = []
quantized_weight_data = np.zeros_like(
weight_data, dtype=save_weight_dtype)
quantized_weight_data = np.zeros_like(weight_data,
dtype=save_weight_dtype)
channel_num = weight_data.shape[-1]
for i in range(channel_num):
scale = np.max(np.abs(weight_data[:, i])) / quantize_range
......@@ -1432,8 +1440,8 @@ class WeightQuantization(object):
'''
For mul, dequantize the weights to fp32.
'''
dequantized_weight_data = np.zeros_like(
quantized_weight_data, dtype=np.float32)
dequantized_weight_data = np.zeros_like(quantized_weight_data,
dtype=np.float32)
for i in range(len(scales)):
dequantized_weight_data[:, i] = \
(quantized_weight_data[:, i] * scales[i]).astype(np.float32)
......@@ -1441,8 +1449,9 @@ class WeightQuantization(object):
def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
input_abs = np.abs(input)
hist, hist_edeges = np.histogram(
input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
hist, hist_edeges = np.histogram(input_abs,
bins=histogram_bins,
range=(0, np.max(input_abs)))
hist = hist / float(sum(hist))
hist_sum = 0
hist_index = 0
......
......@@ -307,8 +307,9 @@ class QuantizationTransformPass(object):
var_node = self._insert_func(
graph, self._weight_preprocess_func, var_node, op)
elif not is_weight and self._act_preprocess_func is not None:
var_node = self._insert_func(
graph, self._act_preprocess_func, var_node, op)
var_node = self._insert_func(graph,
self._act_preprocess_func,
var_node, op)
# if var node is weight and weight_quantize_func is not None,
# will insert weight quantize func to quantize and dequantize weight
......@@ -376,10 +377,10 @@ class QuantizationTransformPass(object):
graph.out_node_mapping_table = dict()
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
with tqdm(
total=len(ops),
bar_format='Adding quant op for weight:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
with tqdm(total=len(ops),
bar_format=
'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for op in ops:
if op.name() in self._quantizable_ops:
if not self._is_skip_quant(graph, op) and _has_weight(op):
......@@ -405,12 +406,8 @@ class QuantizationTransformPass(object):
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=core.VarDesc.VarType.INT64)
_init_var_node(
global_step_in,
np.zeros(
[1], dtype='int64'),
self._scope,
self._place)
_init_var_node(global_step_in, np.zeros([1], dtype='int64'),
self._scope, self._place)
global_step_out = graph.create_var_node_from_desc(
global_step_in.var())
# The attribute of `op_role` is needed by ParallelExecutor.
......@@ -459,12 +456,9 @@ class QuantizationTransformPass(object):
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_var_node,
np.zeros(
scale_var_node.shape(), dtype=data_type),
self._scope,
self._place)
_init_var_node(scale_var_node,
np.zeros(scale_var_node.shape(), dtype=data_type),
self._scope, self._place)
quant_op_node = graph.create_op_node(
op_type='fake_quantize_abs_max',
attrs={
......@@ -472,8 +466,10 @@ class QuantizationTransformPass(object):
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node},
outputs={'Out': quant_var_node,
'OutScale': scale_var_node})
outputs={
'Out': quant_var_node,
'OutScale': scale_var_node
})
graph.link_to(var_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_var_node)
......@@ -498,12 +494,9 @@ class QuantizationTransformPass(object):
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[_SCALE_DEFAULT_VALUE], dtype=data_type),
self._scope,
self._place)
_init_var_node(scale_in_node,
np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
self._scope, self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
inputs = {'X': var_node, 'InScale': scale_in_node}
......@@ -518,12 +511,9 @@ class QuantizationTransformPass(object):
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scales_node,
np.zeros(
[self._window_size], dtype=data_type),
self._scope,
self._place)
_init_var_node(scales_node,
np.zeros([self._window_size], dtype=data_type),
self._scope, self._place)
inputs['Iter'] = self._global_step
outputs['OutScales'] = scales_node
......@@ -566,12 +556,9 @@ class QuantizationTransformPass(object):
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[_SCALE_DEFAULT_VALUE], dtype=data_type),
self._scope,
self._place)
_init_var_node(scale_in_node,
np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
self._scope, self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
ins = {'X': var_node, 'InScale': scale_in_node}
......@@ -584,27 +571,19 @@ class QuantizationTransformPass(object):
shape=[1])
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
_init_var_node(state_in_node, np.ones([1], dtype=data_type),
self._scope, self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('accum'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(state_in_node.var(
))
accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
))
_init_var_node(accum_in_node, np.ones([1], dtype=data_type),
self._scope, self._place)
state_out_node = graph.create_var_node_from_desc(
state_in_node.var())
accum_out_node = graph.create_var_node_from_desc(
accum_in_node.var())
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
......@@ -656,12 +635,9 @@ class QuantizationTransformPass(object):
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_var_node,
np.zeros(
scale_var_node.shape(), dtype=data_type),
self._scope,
self._place)
_init_var_node(scale_var_node,
np.zeros(scale_var_node.shape(), dtype=data_type),
self._scope, self._place)
quant_op_node = graph.create_op_node(
op_type='fake_channel_wise_quantize_abs_max',
attrs={
......@@ -671,8 +647,10 @@ class QuantizationTransformPass(object):
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node},
outputs={'Out': quant_var_node,
'OutScale': scale_var_node})
outputs={
'Out': quant_var_node,
'OutScale': scale_var_node
})
graph.link_to(var_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_var_node)
......@@ -696,8 +674,10 @@ class QuantizationTransformPass(object):
'max_range': float(max_range),
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node,
'Scale': scale_var_node},
inputs={
'X': var_node,
'Scale': scale_var_node
},
outputs={'Out': dequant_var_node})
graph.link_to(var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
......@@ -723,8 +703,10 @@ class QuantizationTransformPass(object):
'quant_axis': quant_axis,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node,
'Scales': scale_var_nodes},
inputs={
'X': var_node,
'Scales': scale_var_nodes
},
outputs={'Out': dequant_var_node})
graph.link_to(var_node, dequant_op_node)
for scale_n in scale_var_nodes:
......@@ -812,10 +794,9 @@ class QuantizationTransformPass(object):
startup_program = Program()
with program_guard(tmp_program, startup_program):
with unique_name.guard(var_node.name() + "_"):
in_node = data(
var_node.name() + '_tmp_input',
shape=var_node.shape(),
dtype='float32')
in_node = data(var_node.name() + '_tmp_input',
shape=var_node.shape(),
dtype='float32')
out_node = func(in_node)
graph.out_node_mapping_table[out_node.name] = var_node.name()
# loss shape must be 1 when minimize
......@@ -828,8 +809,8 @@ class QuantizationTransformPass(object):
with scope_guard(self._scope):
self._exe.run(startup_program)
tmp_graph = IrGraph(
core.Graph(tmp_program.desc), for_test=graph._for_test)
tmp_graph = IrGraph(core.Graph(tmp_program.desc),
for_test=graph._for_test)
in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
in_node.name)
out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
......@@ -870,9 +851,11 @@ class QuantizationTransformPass(object):
# find op's gradient op, such as conv2d_grad
op_grad = op_out_grad.outputs[0]
target_out_grad_node = graph._find_node_by_name(
graph.all_var_nodes(), target_out_node.name() + "@GRAD")
graph.all_var_nodes(),
target_out_node.name() + "@GRAD")
in_node_grad = graph._find_node_by_name(
graph.all_var_nodes(), target_in_node.name() + "@GRAD")
graph.all_var_nodes(),
target_in_node.name() + "@GRAD")
in_node_grad_op = in_node_grad.inputs
# update op_grad's input
graph.update_input_link(var_node, target_out_node, op_grad)
......@@ -945,6 +928,7 @@ class QuantizationTransformPass(object):
class QuantizationFreezePass(object):
def __init__(self,
scope,
place,
......@@ -970,8 +954,9 @@ class QuantizationFreezePass(object):
weight_bits(int): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
round_type(str, optional): The method of converting the quantized weights
value from float to int. Currently supports ['round', 'adaround'] methods.
Default is `round`, which is rounding nearest to the nearest whole number.
value float->int. Currently supports ['round', 'adaround'] methods.
Default is `round`, which is rounding nearest to the integer.
'adaround' is refer to https://arxiv.org/abs/2004.10568.
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
since weights are fixed once the model is well trained.
......@@ -1017,7 +1002,8 @@ class QuantizationFreezePass(object):
input_arg_name]
if input_arg_name not in persistable_vars:
scale_v = graph._find_node_by_name(
op_node.outputs, op_node.output('OutScale')[0])
op_node.outputs,
op_node.output('OutScale')[0])
self._quant_var_scale_map[input_arg_name] = scale_v
else:
# Obtain scale from OutScale var node
......@@ -1033,8 +1019,8 @@ class QuantizationFreezePass(object):
scale_v = scale_v.tolist()
self._quant_var_scale_map[input_arg_name] = scale_v
# Quantize weight and restore
param_v = self._load_var(input_arg_name)
if self._round_type == 'round':
param_v = self._load_var(input_arg_name)
if any(
_check_grandchild_op_node(op_node, op)
for op in utils._channelwise_quant_axis1_ops):
......@@ -1045,6 +1031,7 @@ class QuantizationFreezePass(object):
param_v.copy(), scale_v, quant_axis,
self._weight_bits)
quantized_param_v = np.round(quantized_param_v)
# Weight bias correction
if self._bias_correction == True:
quantized_param_v = utils.bias_correction_w(
param_v,
......@@ -1072,8 +1059,8 @@ class QuantizationFreezePass(object):
if self._weight_quantize_type == 'channel_wise_abs_max':
quant_axis = 1 if op_node.name() in \
utils._channelwise_quant_axis1_ops else 0
self._insert_post_channel_dequant_op(graph, op_node,
quant_axis)
self._insert_post_channel_dequant_op(
graph, op_node, quant_axis)
else:
self._insert_post_dequant_op(graph, op_node)
......@@ -1128,7 +1115,8 @@ class QuantizationFreezePass(object):
" more than one output." % (op_node.name()))
output_var_node = graph._find_node_by_name(
op_node.outputs, op_node.output_arg_names()[0])
op_node.outputs,
op_node.output_arg_names()[0])
weight_scale_node = graph.create_persistable_node(
name=unique_name.generate('channel_scale'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
......@@ -1136,9 +1124,8 @@ class QuantizationFreezePass(object):
var_dtype=output_var_node.dtype())
data_type = 'float64' if output_var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(weight_scale_node,
channel_scale.astype(data_type), self._scope,
self._place)
_init_var_node(weight_scale_node, channel_scale.astype(data_type),
self._scope, self._place)
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(output_var_node.name()),
var_type=output_var_node.type(),
......@@ -1201,7 +1188,8 @@ class QuantizationFreezePass(object):
" more than one output." % (op_node.name()))
output_var_node = graph._find_node_by_name(
op_node.outputs, op_node.output_arg_names()[0])
op_node.outputs,
op_node.output_arg_names()[0])
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(output_var_node.name()),
var_type=output_var_node.type(),
......@@ -1213,8 +1201,10 @@ class QuantizationFreezePass(object):
'max_range': float(max_range),
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': output_var_node,
'Scale': scale_var_node},
inputs={
'X': output_var_node,
'Scale': scale_var_node
},
outputs={'Out': dequant_var_node})
graph.link_to(output_var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
......@@ -1273,6 +1263,7 @@ class QuantizationFreezePass(object):
class ConvertToInt8Pass(object):
def __init__(self, scope, place, quantizable_op_type=None):
"""
Convert the weights into int8_t type.
......@@ -1312,8 +1303,8 @@ class ConvertToInt8Pass(object):
name = var_node.name()
if name in persistable_vars:
if name not in input_map:
int8_var_node = self._convert_to_int8(graph,
var_node)
int8_var_node = self._convert_to_int8(
graph, var_node)
input_map[name] = int8_var_node
graph.update_input_link(var_node, input_map[name],
op_node)
......@@ -1361,6 +1352,7 @@ class ConvertToInt8Pass(object):
class TransformForMobilePass(object):
def __init__(self):
"""
This pass is used to convert the frozen graph for paddle-mobile execution.
......@@ -1403,6 +1395,7 @@ class TransformForMobilePass(object):
class OutScaleForTrainingPass(object):
def __init__(self, scope=None, place=None, moving_rate=0.9):
"""
This pass is used for calculating output scales of some operators.
......@@ -1436,10 +1429,9 @@ class OutScaleForTrainingPass(object):
for op in graph.all_op_nodes():
if op.name() in self._teller_set:
target_ops.append(op)
with tqdm(
total=len(target_ops),
bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
with tqdm(total=len(target_ops),
bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for op in target_ops:
for output_var_name in utils._get_op_output_var_names(op):
in_node = graph._find_node_by_name(op.outputs,
......@@ -1455,12 +1447,8 @@ class OutScaleForTrainingPass(object):
var_dtype=in_node.dtype())
data_type = 'float64' if in_node.dtype() \
== core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
_init_var_node(scale_node, np.ones([1], dtype=data_type),
self._scope, self._place)
ins = {'X': in_node}
outs = {'OutScale': scale_node}
if not self._is_test:
......@@ -1469,23 +1457,17 @@ class OutScaleForTrainingPass(object):
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=in_node.dtype(),
shape=[1])
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
_init_var_node(state_in_node,
np.ones([1], dtype=data_type),
self._scope, self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('scale_accum@'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=in_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
_init_var_node(accum_in_node,
np.ones([1], dtype=data_type),
self._scope, self._place)
state_out_node = graph.create_var_node_from_desc(
state_in_node.var())
accum_out_node = graph.create_var_node_from_desc(
......@@ -1525,6 +1507,7 @@ class OutScaleForTrainingPass(object):
class OutScaleForInferencePass(object):
def __init__(self, scope=None):
"""
This pass is used for setting output scales of some operators.
......@@ -1566,8 +1549,8 @@ class OutScaleForInferencePass(object):
# For compatibility, we save output threshold by two methods.
op_node.op()._set_attr("out_threshold", float(scale_value))
argname_index = utils._get_output_name_index(op_node,
var_name)
argname_index = utils._get_output_name_index(
op_node, var_name)
assert argname_index is not None, \
var_name + " is not the output of the op"
op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
......@@ -1660,10 +1643,10 @@ class AddQuantDequantPass(object):
# Forward stage, insert quant_dequant op
all_op_nodes = graph.all_op_nodes()
with tqdm(
total=len(all_op_nodes),
bar_format='Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
with tqdm(total=len(all_op_nodes),
bar_format=
'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for op_node in all_op_nodes:
if op_node.name() in self._quantizable_op_type:
is_skip = False
......@@ -1685,8 +1668,8 @@ class AddQuantDequantPass(object):
op_node.op()._set_attr("with_quant_attr", True)
arg_names = utils._get_op_input_var_names(op_node)
for arg_name in arg_names:
in_node = graph._find_node_by_name(op_node.inputs,
arg_name)
in_node = graph._find_node_by_name(
op_node.inputs, arg_name)
if arg_name in dequantized_vars_map:
quant_var_node = dequantized_vars_map[arg_name]
else:
......@@ -1703,8 +1686,8 @@ class AddQuantDequantPass(object):
if op_node.name() in self._quantizable_grad_op_type:
for input_name in op_node.input_arg_names():
if input_name in dequantized_vars_map:
in_node = graph._find_node_by_name(op_node.inputs,
input_name)
in_node = graph._find_node_by_name(
op_node.inputs, input_name)
dequant_var_node = dequantized_vars_map[input_name]
graph.update_input_link(in_node, dequant_var_node,
op_node)
......@@ -1716,11 +1699,11 @@ class AddQuantDequantPass(object):
quant_bits):
"""Insert fake_quantize_dequantize_moving_average_abs_max op.
"""
quant_var_node = graph.create_var_node(
name="{}.quant_dequant".format(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
quant_var_node = graph.create_var_node(name="{}.quant_dequant".format(
var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_in_node = graph.create_persistable_node(
name="{}.quant_dequant.scale".format(var_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
......@@ -1728,12 +1711,9 @@ class AddQuantDequantPass(object):
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[_SCALE_DEFAULT_VALUE], dtype=data_type),
self._scope,
self._place)
_init_var_node(scale_in_node,
np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
self._scope, self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
ins = {'X': var_node, 'InScale': scale_in_node}
......@@ -1746,27 +1726,19 @@ class AddQuantDequantPass(object):
shape=[1])
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
_init_var_node(state_in_node, np.ones([1], dtype=data_type),
self._scope, self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('quant_dequant.accum'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(state_in_node.var(
))
accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
))
_init_var_node(accum_in_node, np.ones([1], dtype=data_type),
self._scope, self._place)
state_out_node = graph.create_var_node_from_desc(
state_in_node.var())
accum_out_node = graph.create_var_node_from_desc(
accum_in_node.var())
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
......@@ -1833,11 +1805,11 @@ class InsertQuantizeLinear(object):
def insert_quant_op(self, graph, var_node):
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
quant_var_node = graph.create_var_node(name=self._quantized_var_name(
var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
if self.channel_wise:
......@@ -1863,12 +1835,9 @@ class InsertQuantizeLinear(object):
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=scale_var_node.shape(),
var_dtype=core.VarDesc.VarType.INT32)
_init_var_node(
zero_point_node,
np.zeros(
scale_var_node.shape(), dtype="int32"),
self._scope,
self._place)
_init_var_node(zero_point_node,
np.zeros(scale_var_node.shape(), dtype="int32"),
self._scope, self._place)
inputs = {"X": var_node, "Scale": scale_var_node}
if zero_point_node is not None:
......@@ -1879,15 +1848,14 @@ class InsertQuantizeLinear(object):
if not self._is_test:
attrs["is_test"] = self._is_test
attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
scale_out_node = graph.create_var_node_from_desc(scale_var_node.var(
))
scale_out_node = graph.create_var_node_from_desc(
scale_var_node.var())
outputs["OutScale"] = scale_out_node
quant_op_node = graph.create_op_node(
op_type="quantize_linear",
attrs=attrs,
inputs=inputs,
outputs=outputs)
quant_op_node = graph.create_op_node(op_type="quantize_linear",
attrs=attrs,
inputs=inputs,
outputs=outputs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_var_node, quant_op_node)
......@@ -1914,12 +1882,9 @@ class InsertQuantizeLinear(object):
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=scale_var_node.shape(),
var_dtype=core.VarDesc.VarType.INT32)
_init_var_node(
zero_point_node,
np.zeros(
scale_var_node.shape(), dtype="int32"),
self._scope,
self._place)
_init_var_node(zero_point_node,
np.zeros(scale_var_node.shape(), dtype="int32"),
self._scope, self._place)
inputs = {"X": var_node, "Scale": scale_var_node}
if zero_point_node is not None:
......@@ -1929,11 +1894,10 @@ class InsertQuantizeLinear(object):
if not self._is_test:
attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
quant_op_node = graph.create_op_node(
op_type="dequantize_linear",
attrs=attrs,
inputs=inputs,
outputs={"Y": dequant_var_node})
quant_op_node = graph.create_op_node(op_type="dequantize_linear",
attrs=attrs,
inputs=inputs,
outputs={"Y": dequant_var_node})
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_var_node, quant_op_node)
......@@ -2151,11 +2115,13 @@ class QuantizationTransformPassV2(object):
# will insert activation preprocess func
# to preorocess activation before quantization
if is_weight and self._weight_preprocess_func is not None:
var_node = self._insert_func(
graph, self._weight_preprocess_func, var_node, op)
var_node = self._insert_func(graph,
self._weight_preprocess_func,
var_node, op)
elif not is_weight and self._act_preprocess_func is not None:
var_node = self._insert_func(
graph, self._act_preprocess_func, var_node, op)
var_node = self._insert_func(graph,
self._act_preprocess_func,
var_node, op)
# if var node is weight and weight_quantize_func is not None,
# will insert weight quantize func to quantize and dequantize weight
......@@ -2167,8 +2133,9 @@ class QuantizationTransformPassV2(object):
processed_vars.append(name)
continue
elif not is_weight and self._act_quantize_func is not None:
target_out_node = self._insert_func(
graph, self._act_quantize_func, var_node, op)
target_out_node = self._insert_func(graph,
self._act_quantize_func,
var_node, op)
processed_vars.append(name)
continue
......@@ -2263,10 +2230,10 @@ class QuantizationTransformPassV2(object):
graph.out_node_mapping_table = dict()
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
with tqdm(
total=len(ops),
bar_format='Adding quant op for weight:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
with tqdm(total=len(ops),
bar_format=
'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for op in ops:
if op.name() in self._quantizable_ops:
if not self._is_skip_quant(graph,
......@@ -2375,10 +2342,10 @@ class AddQuantDequantPassV2(object):
# Forward stage, insert quant_dequant op
all_op_nodes = graph.all_op_nodes()
with tqdm(
total=len(all_op_nodes),
bar_format='Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
with tqdm(total=len(all_op_nodes),
bar_format=
'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for op_node in all_op_nodes:
if op_node.name() in self._quantizable_op_type:
is_skip = False
......@@ -2397,8 +2364,8 @@ class AddQuantDequantPassV2(object):
"qat_without_weight")
arg_names = utils._get_op_input_var_names(op_node)
for arg_name in arg_names:
in_node = graph._find_node_by_name(op_node.inputs,
arg_name)
in_node = graph._find_node_by_name(
op_node.inputs, arg_name)
if in_node.persistable():
continue
if arg_name in dequantized_vars_map:
......@@ -2425,8 +2392,8 @@ class AddQuantDequantPassV2(object):
if op_node.name() in self._quantizable_grad_op_type:
for input_name in op_node.input_arg_names():
if input_name in dequantized_vars_map:
in_node = graph._find_node_by_name(op_node.inputs,
input_name)
in_node = graph._find_node_by_name(
op_node.inputs, input_name)
dequant_var_node = dequantized_vars_map[input_name]
graph.update_input_link(in_node, dequant_var_node,
op_node)
......@@ -2502,43 +2469,42 @@ class ReplaceFakeQuantDequantPass(object):
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=scale_node.shape(),
var_dtype=core.VarDesc.VarType.INT32)
_init_var_node(
zero_point_node,
np.zeros(
scale_node.shape(), dtype="int32"),
self._scope,
self._place)
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(x_node.name()),
var_type=x_node.type(),
shape=x_node.shape(),
var_dtype=x_node.dtype())
quant_op_node = graph.create_op_node(
op_type="quantize_linear",
attrs={"quant_axis": quant_axis,
"bit_length": bit_length},
inputs={
"X": x_node,
"Scale": scale_node,
"ZeroPoint": zero_point_node
},
outputs={"Y": quant_var_node})
_init_var_node(zero_point_node,
np.zeros(scale_node.shape(), dtype="int32"),
self._scope, self._place)
quant_var_node = graph.create_var_node(name=self._quantized_var_name(
x_node.name()),
var_type=x_node.type(),
shape=x_node.shape(),
var_dtype=x_node.dtype())
quant_op_node = graph.create_op_node(op_type="quantize_linear",
attrs={
"quant_axis": quant_axis,
"bit_length": bit_length
},
inputs={
"X": x_node,
"Scale": scale_node,
"ZeroPoint": zero_point_node
},
outputs={"Y": quant_var_node})
graph.link_to(x_node, quant_op_node)
graph.link_to(scale_node, quant_op_node)
if zero_point_node is not None:
graph.link_to(zero_point_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
dequant_op_node = graph.create_op_node(
op_type="dequantize_linear",
attrs={"quant_axis": quant_axis,
"bit_length": bit_length},
inputs={
"X": quant_var_node,
"Scale": scale_node,
"ZeroPoint": zero_point_node
},
outputs={"Y": out_node})
dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
attrs={
"quant_axis": quant_axis,
"bit_length": bit_length
},
inputs={
"X": quant_var_node,
"Scale": scale_node,
"ZeroPoint": zero_point_node
},
outputs={"Y": out_node})
graph.link_to(quant_var_node, dequant_op_node)
graph.link_to(scale_node, dequant_op_node)
if zero_point_node is not None:
......@@ -2617,7 +2583,8 @@ class QuantWeightPass(object):
scale_node = graph._find_node_by_name(_op.inputs,
_op.input("Scale")[0])
zero_point_node = graph._find_node_by_name(
_op.inputs, _op.input("ZeroPoint")[0])
_op.inputs,
_op.input("ZeroPoint")[0])
out_node = graph._find_node_by_name(_op.outputs,
_op.output("Y")[0])
......@@ -2633,8 +2600,11 @@ class QuantWeightPass(object):
param_v = self._load_var(x_node.name())
quant_axis = _op.op().attr("quant_axis")
bits_length = _op.op().attr("bit_length")
quantized_param_v = utils.quant_tensor(param_v.copy(), scale_v,
quant_axis, bits_length)
quantized_param_v = utils.quant_tensor(param_v.copy(),
scale_v,
quant_axis,
bits_length,
onnx_format=True)
if self._bias_correction == True:
quantized_param_v = utils.bias_correction_w(
param_v,
......
......@@ -321,7 +321,7 @@ def set_variable_data(scope, place, var_name, np_value):
tensor.set(np_value, place)
def quant_tensor(x, scale, quant_axis=0, weight_bits=8):
def quant_tensor(x, scale, quant_axis=0, weight_bits=8, onnx_format=False):
# symmetry quant
def _clip(x, scale):
x[x > scale] = scale
......@@ -335,15 +335,27 @@ def quant_tensor(x, scale, quant_axis=0, weight_bits=8):
if s == 0.0:
s = 1e-8
if quant_axis == 0:
x[i] = _clip(x[i], s)
x[i] = x[i] / s * bnt
if onnx_format:
x[i] = np.round(x[i] / s * bnt)
x[i] = np.clip(x[i], -bnt - 1, bnt)
else:
x[i] = _clip(x[i], s)
x[i] = x[i] / s * bnt
else:
x[:, i] = _clip(x[:, i], s)
x[:, i] = x[:, i] / s * bnt
if onnx_format:
x[:, i] = np.round(x[:, i] / s * bnt)
x[:, i] = np.clip(x[:, i], -bnt - 1, bnt)
else:
x[:, i] = _clip(x[:, i], s)
x[:, i] = x[:, i] / s * bnt
else:
scale = 1e-8 if scale == 0.0 else scale
x = _clip(x, scale)
x = x / scale * bnt
if onnx_format:
x = np.round(x / scale * bnt)
x = np.clip(x, -bnt - 1, bnt)
else:
x = _clip(x, scale)
x = x / scale * bnt
return x
......@@ -416,6 +428,7 @@ def calculate_quant_cos_error(orig_tensor, qdq_tensor):
class tqdm(object):
def __init__(self, total, bar_format='Loading|{bar}', ncols=80):
self.total = total
self.bar_format = bar_format
......
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
file(
GLOB TEST_OPS
RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}"
"test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
function(_inference_analysis_python_api_int8_test target model_dir data_path filename use_mkldnn)
py_test(${target} SRCS ${filename}
ENVS CPU_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=${use_mkldnn}
ARGS --infer_model ${model_dir}/model
--infer_data ${data_path}
--int8_model_save_path int8_models/${target}
--warmup_batch_size ${WARMUP_BATCH_SIZE}
--batch_size 50)
function(_inference_analysis_python_api_int8_test target model_dir data_path
filename use_mkldnn)
py_test(
${target}
SRCS ${filename}
ENVS
CPU_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=${use_mkldnn}
ARGS
--infer_model
${model_dir}/model
--infer_data
${data_path}
--int8_model_save_path
int8_models/${target}
--warmup_batch_size
${WARMUP_BATCH_SIZE}
--batch_size
50)
endfunction()
function(inference_analysis_python_api_int8_test target model_dir data_path filename)
_inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path} ${filename} False)
function(inference_analysis_python_api_int8_test target model_dir data_path
filename)
_inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path}
${filename} False)
endfunction()
function(inference_analysis_python_api_int8_test_custom_warmup_batch_size target model_dir data_dir filename warmup_batch_size)
set(WARMUP_BATCH_SIZE ${warmup_batch_size})
inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_dir} ${filename})
function(inference_analysis_python_api_int8_test_custom_warmup_batch_size
target model_dir data_dir filename warmup_batch_size)
set(WARMUP_BATCH_SIZE ${warmup_batch_size})
inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_dir}
${filename})
endfunction()
function(inference_analysis_python_api_int8_test_mkldnn target model_dir data_path filename)
_inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path} ${filename} True)
function(inference_analysis_python_api_int8_test_mkldnn target model_dir
data_path filename)
_inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path}
${filename} True)
endfunction()
function(download_data install_dir url data_file check_sum)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${url} ${data_file} ${check_sum})
endif()
if(NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${url} ${data_file}
${check_sum})
endif()
endfunction()
function(download_quant_data install_dir data_file check_sum)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8 ${data_file} ${check_sum})
endif()
if(NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8
${data_file} ${check_sum})
endif()
endfunction()
function(download_quant_model install_dir data_file check_sum)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file} ${check_sum})
endif()
if(NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(
${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file} ${check_sum})
endif()
endfunction()
function(download_quant_fp32_model install_dir data_file check_sum)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models/fp32 ${data_file} ${check_sum})
endif()
if(NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(
${install_dir} ${INFERENCE_URL}/int8/QAT_models/fp32 ${data_file}
${check_sum})
endif()
endfunction()
function(download_lstm_model install_dir data_file check_sum)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/lstm ${data_file} ${check_sum})
endif()
if(NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/lstm
${data_file} ${check_sum})
endif()
endfunction()
function(inference_quant_int8_image_classification_test target quant_model_dir dataset_path)
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant_int8_image_classification_comparison.py"
ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
ARGS --quant_model ${quant_model_dir}
--infer_data ${dataset_path}
--batch_size 25
--batch_num 2
--acc_diff_threshold 0.1)
function(inference_quant_int8_image_classification_test target quant_model_dir
dataset_path)
py_test(
${target}
SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant_int8_image_classification_comparison.py"
ENVS
FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
ARGS
--quant_model
${quant_model_dir}
--infer_data
${dataset_path}
--batch_size
25
--batch_num
2
--acc_diff_threshold
0.1)
endfunction()
# set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 25
function(inference_quant2_int8_image_classification_test target quant_model_dir fp32_model_dir dataset_path)
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_image_classification_comparison.py"
ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
ARGS --quant_model ${quant_model_dir}
--fp32_model ${fp32_model_dir}
--infer_data ${dataset_path}
--batch_size 50
--batch_num 2
--acc_diff_threshold 0.1)
# set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 25
function(inference_quant2_int8_image_classification_test target quant_model_dir
fp32_model_dir dataset_path)
py_test(
${target}
SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_image_classification_comparison.py"
ENVS
FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
ARGS
--quant_model
${quant_model_dir}
--fp32_model
${fp32_model_dir}
--infer_data
${dataset_path}
--batch_size
50
--batch_num
2
--acc_diff_threshold
0.1)
endfunction()
# set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 20
function(inference_quant2_int8_nlp_test target quant_model_dir fp32_model_dir dataset_path labels_path ops_to_quantize)
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_nlp_comparison.py"
ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
ARGS --quant_model ${quant_model_dir}
--fp32_model ${fp32_model_dir}
--infer_data ${dataset_path}
--labels ${labels_path}
--batch_size 10
--batch_num 2
--acc_diff_threshold 0.1
--ops_to_quantize ${ops_to_quantize})
# set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 20
function(
inference_quant2_int8_nlp_test
target
quant_model_dir
fp32_model_dir
dataset_path
labels_path
ops_to_quantize)
py_test(
${target}
SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_nlp_comparison.py"
ENVS
FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
ARGS
--quant_model
${quant_model_dir}
--fp32_model
${fp32_model_dir}
--infer_data
${dataset_path}
--labels
${labels_path}
--batch_size
10
--batch_num
2
--acc_diff_threshold
0.1
--ops_to_quantize
${ops_to_quantize})
endfunction()
function(inference_quant2_int8_lstm_model_test target fp32_model quant_model dataset_path)
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_lstm_model.py"
ARGS --fp32_model ${fp32_model}
--quant_model ${quant_model}
--infer_data ${dataset_path}
--num_threads 1
--mkldnn_cache_capacity 100
--warmup_iter 100
--acc_diff_threshold 0.11)
function(inference_quant2_int8_lstm_model_test target fp32_model quant_model
dataset_path)
py_test(
${target}
SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_lstm_model.py"
ARGS
--fp32_model
${fp32_model}
--quant_model
${quant_model}
--infer_data
${dataset_path}
--num_threads
1
--mkldnn_cache_capacity
100
--warmup_iter
100
--acc_diff_threshold
0.11)
endfunction()
function(download_quant_data install_dir data_file check_sum)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8 ${data_file} ${check_sum})
endif()
if(NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8
${data_file} ${check_sum})
endif()
endfunction()
function(download_quant_model install_dir data_file check_sum)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file} ${check_sum})
endif()
if(NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(
${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file} ${check_sum})
endif()
endfunction()
function(save_quant_ic_model_test target quant_model_dir int8_model_save_path)
py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py
ARGS --quant_model_path ${quant_model_dir}
--int8_model_save_path ${int8_model_save_path}
--debug)
py_test(
${target}
SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py
ARGS
--quant_model_path
${quant_model_dir}
--int8_model_save_path
${int8_model_save_path}
--debug)
endfunction()
function(save_quant_nlp_model_test target quant_model_dir int8_model_save_path ops_to_quantize)
py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py
ARGS --quant_model_path ${quant_model_dir}
--int8_model_save_path ${int8_model_save_path}
--ops_to_quantize ${ops_to_quantize})
function(save_quant_nlp_model_test target quant_model_dir int8_model_save_path
ops_to_quantize)
py_test(
${target}
SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py
ARGS
--quant_model_path
${quant_model_dir}
--int8_model_save_path
${int8_model_save_path}
--ops_to_quantize
${ops_to_quantize})
endfunction()
function(convert_model2dot_test target model_path save_graph_dir save_graph_name)
py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/convert_model2dot.py
ARGS --model_path ${model_path}
--save_graph_dir ${save_graph_dir}
--save_graph_name ${save_graph_name})
function(convert_model2dot_test target model_path save_graph_dir
save_graph_name)
py_test(
${target}
SRCS ${CMAKE_CURRENT_SOURCE_DIR}/convert_model2dot.py
ARGS
--model_path
${model_path}
--save_graph_dir
${save_graph_dir}
--save_graph_name
${save_graph_name})
endfunction()
if(WIN32)
list(REMOVE_ITEM TEST_OPS test_light_nas)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_while)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model)
list(REMOVE_ITEM TEST_OPS test_imperative_ptq)
list(REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1)
list(REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2)
list(REMOVE_ITEM TEST_OPS test_imperative_qat_amp)
list(REMOVE_ITEM TEST_OPS test_light_nas)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_while)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model)
list(REMOVE_ITEM TEST_OPS test_imperative_ptq)
list(REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1)
list(REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2)
list(REMOVE_ITEM TEST_OPS test_imperative_qat_amp)
endif()
if(LINUX AND WITH_MKLDNN)
#### Image classification dataset: ImageNet (small)
# The dataset should already be downloaded for INT8v2 unit tests
set(IMAGENET_DATA_PATH "${INFERENCE_DEMO_INSTALL_DIR}/imagenet/data.bin")
#### INT8 image classification python api test
# Models should be already downloaded for INT8v2 unit tests
set(INT8_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8v2")
#### QUANT & INT8 comparison python api tests
set(QUANT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/quant")
### Quant1 for image classification
# Quant ResNet50
set(QUANT_RESNET50_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant")
set(QUANT_RESNET50_MODEL_ARCHIVE "ResNet50_qat_model.tar.gz")
download_quant_model(${QUANT_RESNET50_MODEL_DIR} ${QUANT_RESNET50_MODEL_ARCHIVE} ff89b934ab961c3a4a844193ece2e8a7)
inference_quant_int8_image_classification_test(test_quant_int8_resnet50_mkldnn ${QUANT_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant ResNet101
set(QUANT_RESNET101_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet101_quant")
set(QUANT_RESNET101_MODEL_ARCHIVE "ResNet101_qat_model.tar.gz")
download_quant_model(${QUANT_RESNET101_MODEL_DIR} ${QUANT_RESNET101_MODEL_ARCHIVE} 95c6d01e3aeba31c13efb2ba8057d558)
# inference_quant_int8_image_classification_test(test_quant_int8_resnet101_mkldnn ${QUANT_RESNET101_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant GoogleNet
set(QUANT_GOOGLENET_MODEL_DIR "${QUANT_INSTALL_DIR}/GoogleNet_quant")
set(QUANT_GOOGLENET_MODEL_ARCHIVE "GoogleNet_qat_model.tar.gz")
download_quant_model(${QUANT_GOOGLENET_MODEL_DIR} ${QUANT_GOOGLENET_MODEL_ARCHIVE} 1d4a7383baa63e7d1c423e8db2b791d5)
inference_quant_int8_image_classification_test(test_quant_int8_googlenet_mkldnn ${QUANT_GOOGLENET_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant MobileNetV1
set(QUANT_MOBILENETV1_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV1_quant")
set(QUANT_MOBILENETV1_MODEL_ARCHIVE "MobileNetV1_qat_model.tar.gz")
download_quant_model(${QUANT_MOBILENETV1_MODEL_DIR} ${QUANT_MOBILENETV1_MODEL_ARCHIVE} 3b774d94a9fcbb604d09bdb731fc1162)
inference_quant_int8_image_classification_test(test_quant_int8_mobilenetv1_mkldnn ${QUANT_MOBILENETV1_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant MobileNetV2
set(QUANT_MOBILENETV2_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV2_quant")
set(QUANT_MOBILENETV2_MODEL_ARCHIVE "MobileNetV2_qat_model.tar.gz")
download_quant_model(${QUANT_MOBILENETV2_MODEL_DIR} ${QUANT_MOBILENETV2_MODEL_ARCHIVE} 758a99d9225d8b73e1a8765883f96cdd)
inference_quant_int8_image_classification_test(test_quant_int8_mobilenetv2_mkldnn ${QUANT_MOBILENETV2_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant VGG16
set(QUANT_VGG16_MODEL_DIR "${QUANT_INSTALL_DIR}/VGG16_quant")
set(QUANT_VGG16_MODEL_ARCHIVE "VGG16_qat_model.tar.gz")
download_quant_model(${QUANT_VGG16_MODEL_DIR} ${QUANT_VGG16_MODEL_ARCHIVE} c37e63ca82a102f47be266f8068b0b55)
# inference_quant_int8_image_classification_test(test_quant_int8_vgg16_mkldnn ${QUANT_VGG16_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant VGG19
set(QUANT_VGG19_MODEL_DIR "${QUANT_INSTALL_DIR}/VGG19_quant")
set(QUANT_VGG19_MODEL_ARCHIVE "VGG19_qat_model.tar.gz")
download_quant_model(${QUANT_VGG19_MODEL_DIR} ${QUANT_VGG19_MODEL_ARCHIVE} 62bcd4b6c3ca2af67e8251d1c96ea18f)
# inference_quant_int8_image_classification_test(test_quant_int8_vgg19_mkldnn ${QUANT_VGG19_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
### Quant2 for image classification
# Quant2 ResNet50 with input/output scales in `fake_quantize_moving_average_abs_max` operators,
# with weight scales in `fake_dequantize_max_abs` operators
set(QUANT2_RESNET50_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant2")
set(QUANT2_RESNET50_MODEL_ARCHIVE "ResNet50_qat_perf.tar.gz")
download_quant_model(${QUANT2_RESNET50_MODEL_DIR} ${QUANT2_RESNET50_MODEL_ARCHIVE} e87309457e8c462a579340607f064d66)
set(FP32_RESNET50_MODEL_DIR "${INT8_INSTALL_DIR}/resnet50")
inference_quant2_int8_image_classification_test(test_quant2_int8_resnet50_mkldnn ${QUANT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes,
# with weight scales in `fake_dequantize_max_abs` operators
set(QUANT2_RESNET50_RANGE_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant2_range")
set(QUANT2_RESNET50_RANGE_MODEL_ARCHIVE "ResNet50_qat_range.tar.gz")
download_quant_model(${QUANT2_RESNET50_RANGE_MODEL_DIR} ${QUANT2_RESNET50_RANGE_MODEL_ARCHIVE} 2fdc8a139f041c0d270abec826b2d304)
inference_quant2_int8_image_classification_test(test_quant2_int8_resnet50_range_mkldnn ${QUANT2_RESNET50_RANGE_MODEL_DIR}/ResNet50_qat_range ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes,
# with weight scales in `fake_channel_wise_dequantize_max_abs` operators
set(QUANT2_RESNET50_CHANNELWISE_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant2_channelwise")
set(QUANT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE "ResNet50_qat_channelwise.tar.gz")
download_quant_model(${QUANT2_RESNET50_CHANNELWISE_MODEL_DIR} ${QUANT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE} 887a1b1b0e9a4efd10f263a43764db26)
inference_quant2_int8_image_classification_test(test_quant2_int8_resnet50_channelwise_mkldnn ${QUANT2_RESNET50_CHANNELWISE_MODEL_DIR}/ResNet50_qat_channelwise ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant2 MobileNetV1
set(QUANT2_MOBILENETV1_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV1_quant2")
set(QUANT2_MOBILENETV1_MODEL_ARCHIVE "MobileNet_qat_perf.tar.gz")
download_quant_model(${QUANT2_MOBILENETV1_MODEL_DIR} ${QUANT2_MOBILENETV1_MODEL_ARCHIVE} 7f626e453db2d56fed6c2538621ffacf)
set(FP32_MOBILENETV1_MODEL_DIR "${INT8_INSTALL_DIR}/mobilenetv1")
inference_quant2_int8_image_classification_test(test_quant2_int8_mobilenetv1_mkldnn ${QUANT2_MOBILENETV1_MODEL_DIR}/MobileNet_qat_perf/float ${FP32_MOBILENETV1_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
### Quant2 for NLP
set(NLP_DATA_ARCHIVE "Ernie_dataset.tar.gz")
set(NLP_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/Ernie_dataset")
set(NLP_DATA_PATH "${NLP_DATA_DIR}/Ernie_dataset/1.8w.bs1")
set(NLP_LABLES_PATH "${NLP_DATA_DIR}/Ernie_dataset/label.xnli.dev")
download_quant_data(${NLP_DATA_DIR} ${NLP_DATA_ARCHIVE} e650ce0cbc1fadbed5cc2c01d4e734dc)
# Quant2 Ernie
set(QUANT2_ERNIE_MODEL_ARCHIVE "ernie_qat.tar.gz")
set(QUANT2_ERNIE_MODEL_DIR "${QUANT_INSTALL_DIR}/Ernie_quant2")
download_quant_model(${QUANT2_ERNIE_MODEL_DIR} ${QUANT2_ERNIE_MODEL_ARCHIVE} f7cdf4720755ecf66efbc8044e9922d9)
set(FP32_ERNIE_MODEL_ARCHIVE "ernie_fp32_model.tar.gz")
set(FP32_ERNIE_MODEL_DIR "${QUANT_INSTALL_DIR}/Ernie_float")
download_quant_fp32_model(${FP32_ERNIE_MODEL_DIR} ${FP32_ERNIE_MODEL_ARCHIVE} 114f38804a3ef8c45e7259e68bbd838b)
set(QUANT2_ERNIE_OPS_TO_QUANTIZE "fc,reshape2,transpose2,matmul,elementwise_add,slice")
inference_quant2_int8_nlp_test(test_quant2_int8_ernie_mkldnn ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${FP32_ERNIE_MODEL_DIR}/ernie_fp32_model ${NLP_DATA_PATH} ${NLP_LABLES_PATH} ${QUANT2_ERNIE_OPS_TO_QUANTIZE})
# Quant2 GRU
set(QUANT2_GRU_MODEL_ARCHIVE "GRU_quant_acc.tar.gz")
set(QUANT2_GRU_MODEL_DIR "${QUANT_INSTALL_DIR}/GRU_quant2")
download_quant_model(${QUANT2_GRU_MODEL_DIR} ${QUANT2_GRU_MODEL_ARCHIVE} cf207f8076dcfb8b74d8b6bdddf9090c)
set(QUANT2_GRU_OPS_TO_QUANTIZE "multi_gru")
# Quant2 LSTM
set(QUANT2_LSTM_MODEL_ARCHIVE "lstm_quant.tar.gz")
set(QUANT2_LSTM_MODEL_DIR "${QUANT_INSTALL_DIR}/lstm_quant_test")
download_quant_model(${QUANT2_LSTM_MODEL_DIR} ${QUANT2_LSTM_MODEL_ARCHIVE} 40a693803b12ee9e251258f32559abcb)
set(QUANT2_LSTM_OPS_TO_QUANTIZE "fusion_lstm")
### Save FP32 model or INT8 model from Quant model
set(QUANT2_INT8_RESNET50_SAVE_PATH "${QUANT_INSTALL_DIR}/ResNet50_quant2_int8")
save_quant_ic_model_test(save_quant2_model_resnet50 ${QUANT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${QUANT2_INT8_RESNET50_SAVE_PATH})
set(QUANT2_INT8_ERNIE_SAVE_PATH "${QUANT_INSTALL_DIR}/Ernie_quant2_int8")
save_quant_nlp_model_test(save_quant2_model_ernie ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${QUANT2_INT8_ERNIE_SAVE_PATH} ${QUANT2_ERNIE_OPS_TO_QUANTIZE})
set(QUANT2_INT8_GRU_SAVE_PATH "${QUANT_INSTALL_DIR}/GRU_quant2_int8")
save_quant_nlp_model_test(save_quant2_model_gru ${QUANT2_GRU_MODEL_DIR}/GRU_quant_acc ${QUANT2_INT8_GRU_SAVE_PATH} ${QUANT2_GRU_OPS_TO_QUANTIZE})
set(QUANT2_INT8_LSTM_SAVE_PATH "${QUANT_INSTALL_DIR}/lstm_quant2_int8")
save_quant_nlp_model_test(save_quant2_model_lstm ${QUANT2_LSTM_MODEL_DIR}/lstm_quant ${QUANT2_INT8_LSTM_SAVE_PATH} ${QUANT2_LSTM_OPS_TO_QUANTIZE})
# Convert Quant2 model to dot and pdf files
set(QUANT2_INT8_ERNIE_DOT_SAVE_PATH "${QUANT_INSTALL_DIR}/Ernie_quant2_int8_dot_file")
convert_model2dot_test(convert_model2dot_ernie ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${QUANT2_INT8_ERNIE_DOT_SAVE_PATH} "Ernie_quant2_int8")
### PTQ INT8
# PTQ int8 lstm model
set(LSTM_DATA_FILE "quant_lstm_input_data.tar.gz")
set(LSTM_URL "${INFERENCE_URL}/int8/unittest_model_data")
download_data(${QUANT2_INT8_LSTM_SAVE_PATH} ${LSTM_URL} ${LSTM_DATA_FILE} add84c754e9b792fea1fbd728d134ab7)
set(QUANT2_FP32_LSTM_MODEL_ARCHIVE "lstm_fp32_model.tar.gz")
download_lstm_model(${QUANT2_INT8_LSTM_SAVE_PATH} ${QUANT2_FP32_LSTM_MODEL_ARCHIVE} eecd9f44d69a84acc1cf2235c4b8b743)
inference_quant2_int8_lstm_model_test(test_quant2_int8_lstm_mkldnn ${QUANT2_INT8_LSTM_SAVE_PATH}/lstm_fp32_model ${QUANT2_LSTM_MODEL_DIR}/lstm_quant ${QUANT2_INT8_LSTM_SAVE_PATH}/quant_lstm_input_data)
#### Image classification dataset: ImageNet (small)
# The dataset should already be downloaded for INT8v2 unit tests
set(IMAGENET_DATA_PATH "${INFERENCE_DEMO_INSTALL_DIR}/imagenet/data.bin")
#### INT8 image classification python api test
# Models should be already downloaded for INT8v2 unit tests
set(INT8_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8v2")
#### QUANT & INT8 comparison python api tests
set(QUANT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/quant")
### Quant1 for image classification
# Quant ResNet50
set(QUANT_RESNET50_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant")
set(QUANT_RESNET50_MODEL_ARCHIVE "ResNet50_qat_model.tar.gz")
download_quant_model(
${QUANT_RESNET50_MODEL_DIR} ${QUANT_RESNET50_MODEL_ARCHIVE}
ff89b934ab961c3a4a844193ece2e8a7)
inference_quant_int8_image_classification_test(
test_quant_int8_resnet50_mkldnn ${QUANT_RESNET50_MODEL_DIR}/model
${IMAGENET_DATA_PATH})
# Quant ResNet101
set(QUANT_RESNET101_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet101_quant")
set(QUANT_RESNET101_MODEL_ARCHIVE "ResNet101_qat_model.tar.gz")
download_quant_model(
${QUANT_RESNET101_MODEL_DIR} ${QUANT_RESNET101_MODEL_ARCHIVE}
95c6d01e3aeba31c13efb2ba8057d558)
# inference_quant_int8_image_classification_test(test_quant_int8_resnet101_mkldnn ${QUANT_RESNET101_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant GoogleNet
set(QUANT_GOOGLENET_MODEL_DIR "${QUANT_INSTALL_DIR}/GoogleNet_quant")
set(QUANT_GOOGLENET_MODEL_ARCHIVE "GoogleNet_qat_model.tar.gz")
download_quant_model(
${QUANT_GOOGLENET_MODEL_DIR} ${QUANT_GOOGLENET_MODEL_ARCHIVE}
1d4a7383baa63e7d1c423e8db2b791d5)
inference_quant_int8_image_classification_test(
test_quant_int8_googlenet_mkldnn ${QUANT_GOOGLENET_MODEL_DIR}/model
${IMAGENET_DATA_PATH})
# Quant MobileNetV1
set(QUANT_MOBILENETV1_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV1_quant")
set(QUANT_MOBILENETV1_MODEL_ARCHIVE "MobileNetV1_qat_model.tar.gz")
download_quant_model(
${QUANT_MOBILENETV1_MODEL_DIR} ${QUANT_MOBILENETV1_MODEL_ARCHIVE}
3b774d94a9fcbb604d09bdb731fc1162)
inference_quant_int8_image_classification_test(
test_quant_int8_mobilenetv1_mkldnn ${QUANT_MOBILENETV1_MODEL_DIR}/model
${IMAGENET_DATA_PATH})
# Quant MobileNetV2
set(QUANT_MOBILENETV2_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV2_quant")
set(QUANT_MOBILENETV2_MODEL_ARCHIVE "MobileNetV2_qat_model.tar.gz")
download_quant_model(
${QUANT_MOBILENETV2_MODEL_DIR} ${QUANT_MOBILENETV2_MODEL_ARCHIVE}
758a99d9225d8b73e1a8765883f96cdd)
inference_quant_int8_image_classification_test(
test_quant_int8_mobilenetv2_mkldnn ${QUANT_MOBILENETV2_MODEL_DIR}/model
${IMAGENET_DATA_PATH})
# Quant VGG16
set(QUANT_VGG16_MODEL_DIR "${QUANT_INSTALL_DIR}/VGG16_quant")
set(QUANT_VGG16_MODEL_ARCHIVE "VGG16_qat_model.tar.gz")
download_quant_model(${QUANT_VGG16_MODEL_DIR} ${QUANT_VGG16_MODEL_ARCHIVE}
c37e63ca82a102f47be266f8068b0b55)
# inference_quant_int8_image_classification_test(test_quant_int8_vgg16_mkldnn ${QUANT_VGG16_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant VGG19
set(QUANT_VGG19_MODEL_DIR "${QUANT_INSTALL_DIR}/VGG19_quant")
set(QUANT_VGG19_MODEL_ARCHIVE "VGG19_qat_model.tar.gz")
download_quant_model(${QUANT_VGG19_MODEL_DIR} ${QUANT_VGG19_MODEL_ARCHIVE}
62bcd4b6c3ca2af67e8251d1c96ea18f)
# inference_quant_int8_image_classification_test(test_quant_int8_vgg19_mkldnn ${QUANT_VGG19_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
### Quant2 for image classification
# Quant2 ResNet50 with input/output scales in `fake_quantize_moving_average_abs_max` operators,
# with weight scales in `fake_dequantize_max_abs` operators
set(QUANT2_RESNET50_MODEL_DIR "${QUANT_INSTALL_DIR}/ResNet50_quant2")
set(QUANT2_RESNET50_MODEL_ARCHIVE "ResNet50_qat_perf.tar.gz")
download_quant_model(
${QUANT2_RESNET50_MODEL_DIR} ${QUANT2_RESNET50_MODEL_ARCHIVE}
e87309457e8c462a579340607f064d66)
set(FP32_RESNET50_MODEL_DIR "${INT8_INSTALL_DIR}/resnet50")
inference_quant2_int8_image_classification_test(
test_quant2_int8_resnet50_mkldnn
${QUANT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float
${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes,
# with weight scales in `fake_dequantize_max_abs` operators
set(QUANT2_RESNET50_RANGE_MODEL_DIR
"${QUANT_INSTALL_DIR}/ResNet50_quant2_range")
set(QUANT2_RESNET50_RANGE_MODEL_ARCHIVE "ResNet50_qat_range.tar.gz")
download_quant_model(
${QUANT2_RESNET50_RANGE_MODEL_DIR} ${QUANT2_RESNET50_RANGE_MODEL_ARCHIVE}
2fdc8a139f041c0d270abec826b2d304)
inference_quant2_int8_image_classification_test(
test_quant2_int8_resnet50_range_mkldnn
${QUANT2_RESNET50_RANGE_MODEL_DIR}/ResNet50_qat_range
${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes,
# with weight scales in `fake_channel_wise_dequantize_max_abs` operators
set(QUANT2_RESNET50_CHANNELWISE_MODEL_DIR
"${QUANT_INSTALL_DIR}/ResNet50_quant2_channelwise")
set(QUANT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE
"ResNet50_qat_channelwise.tar.gz")
download_quant_model(
${QUANT2_RESNET50_CHANNELWISE_MODEL_DIR}
${QUANT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE}
887a1b1b0e9a4efd10f263a43764db26)
inference_quant2_int8_image_classification_test(
test_quant2_int8_resnet50_channelwise_mkldnn
${QUANT2_RESNET50_CHANNELWISE_MODEL_DIR}/ResNet50_qat_channelwise
${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
# Quant2 MobileNetV1
set(QUANT2_MOBILENETV1_MODEL_DIR "${QUANT_INSTALL_DIR}/MobileNetV1_quant2")
set(QUANT2_MOBILENETV1_MODEL_ARCHIVE "MobileNet_qat_perf.tar.gz")
download_quant_model(
${QUANT2_MOBILENETV1_MODEL_DIR} ${QUANT2_MOBILENETV1_MODEL_ARCHIVE}
7f626e453db2d56fed6c2538621ffacf)
set(FP32_MOBILENETV1_MODEL_DIR "${INT8_INSTALL_DIR}/mobilenetv1")
inference_quant2_int8_image_classification_test(
test_quant2_int8_mobilenetv1_mkldnn
${QUANT2_MOBILENETV1_MODEL_DIR}/MobileNet_qat_perf/float
${FP32_MOBILENETV1_MODEL_DIR}/model ${IMAGENET_DATA_PATH})
### Quant2 for NLP
set(NLP_DATA_ARCHIVE "Ernie_dataset.tar.gz")
set(NLP_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/Ernie_dataset")
set(NLP_DATA_PATH "${NLP_DATA_DIR}/Ernie_dataset/1.8w.bs1")
set(NLP_LABLES_PATH "${NLP_DATA_DIR}/Ernie_dataset/label.xnli.dev")
download_quant_data(${NLP_DATA_DIR} ${NLP_DATA_ARCHIVE}
e650ce0cbc1fadbed5cc2c01d4e734dc)
# Quant2 Ernie
set(QUANT2_ERNIE_MODEL_ARCHIVE "ernie_qat.tar.gz")
set(QUANT2_ERNIE_MODEL_DIR "${QUANT_INSTALL_DIR}/Ernie_quant2")
download_quant_model(${QUANT2_ERNIE_MODEL_DIR} ${QUANT2_ERNIE_MODEL_ARCHIVE}
f7cdf4720755ecf66efbc8044e9922d9)
set(FP32_ERNIE_MODEL_ARCHIVE "ernie_fp32_model.tar.gz")
set(FP32_ERNIE_MODEL_DIR "${QUANT_INSTALL_DIR}/Ernie_float")
download_quant_fp32_model(${FP32_ERNIE_MODEL_DIR} ${FP32_ERNIE_MODEL_ARCHIVE}
114f38804a3ef8c45e7259e68bbd838b)
set(QUANT2_ERNIE_OPS_TO_QUANTIZE
"fc,reshape2,transpose2,matmul,elementwise_add,slice")
inference_quant2_int8_nlp_test(
test_quant2_int8_ernie_mkldnn ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float
${FP32_ERNIE_MODEL_DIR}/ernie_fp32_model ${NLP_DATA_PATH}
${NLP_LABLES_PATH} ${QUANT2_ERNIE_OPS_TO_QUANTIZE})
# Quant2 GRU
set(QUANT2_GRU_MODEL_ARCHIVE "GRU_quant_acc.tar.gz")
set(QUANT2_GRU_MODEL_DIR "${QUANT_INSTALL_DIR}/GRU_quant2")
download_quant_model(${QUANT2_GRU_MODEL_DIR} ${QUANT2_GRU_MODEL_ARCHIVE}
cf207f8076dcfb8b74d8b6bdddf9090c)
set(QUANT2_GRU_OPS_TO_QUANTIZE "multi_gru")
# Quant2 LSTM
set(QUANT2_LSTM_MODEL_ARCHIVE "lstm_quant.tar.gz")
set(QUANT2_LSTM_MODEL_DIR "${QUANT_INSTALL_DIR}/lstm_quant_test")
download_quant_model(${QUANT2_LSTM_MODEL_DIR} ${QUANT2_LSTM_MODEL_ARCHIVE}
40a693803b12ee9e251258f32559abcb)
set(QUANT2_LSTM_OPS_TO_QUANTIZE "fusion_lstm")
### Save FP32 model or INT8 model from Quant model
set(QUANT2_INT8_RESNET50_SAVE_PATH
"${QUANT_INSTALL_DIR}/ResNet50_quant2_int8")
save_quant_ic_model_test(
save_quant2_model_resnet50
${QUANT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float
${QUANT2_INT8_RESNET50_SAVE_PATH})
set(QUANT2_INT8_ERNIE_SAVE_PATH "${QUANT_INSTALL_DIR}/Ernie_quant2_int8")
save_quant_nlp_model_test(
save_quant2_model_ernie ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float
${QUANT2_INT8_ERNIE_SAVE_PATH} ${QUANT2_ERNIE_OPS_TO_QUANTIZE})
set(QUANT2_INT8_GRU_SAVE_PATH "${QUANT_INSTALL_DIR}/GRU_quant2_int8")
save_quant_nlp_model_test(
save_quant2_model_gru ${QUANT2_GRU_MODEL_DIR}/GRU_quant_acc
${QUANT2_INT8_GRU_SAVE_PATH} ${QUANT2_GRU_OPS_TO_QUANTIZE})
set(QUANT2_INT8_LSTM_SAVE_PATH "${QUANT_INSTALL_DIR}/lstm_quant2_int8")
save_quant_nlp_model_test(
save_quant2_model_lstm ${QUANT2_LSTM_MODEL_DIR}/lstm_quant
${QUANT2_INT8_LSTM_SAVE_PATH} ${QUANT2_LSTM_OPS_TO_QUANTIZE})
# Convert Quant2 model to dot and pdf files
set(QUANT2_INT8_ERNIE_DOT_SAVE_PATH
"${QUANT_INSTALL_DIR}/Ernie_quant2_int8_dot_file")
convert_model2dot_test(
convert_model2dot_ernie ${QUANT2_ERNIE_MODEL_DIR}/Ernie_qat/float
${QUANT2_INT8_ERNIE_DOT_SAVE_PATH} "Ernie_quant2_int8")
### PTQ INT8
# PTQ int8 lstm model
set(LSTM_DATA_FILE "quant_lstm_input_data.tar.gz")
set(LSTM_URL "${INFERENCE_URL}/int8/unittest_model_data")
download_data(${QUANT2_INT8_LSTM_SAVE_PATH} ${LSTM_URL} ${LSTM_DATA_FILE}
add84c754e9b792fea1fbd728d134ab7)
set(QUANT2_FP32_LSTM_MODEL_ARCHIVE "lstm_fp32_model.tar.gz")
download_lstm_model(
${QUANT2_INT8_LSTM_SAVE_PATH} ${QUANT2_FP32_LSTM_MODEL_ARCHIVE}
eecd9f44d69a84acc1cf2235c4b8b743)
inference_quant2_int8_lstm_model_test(
test_quant2_int8_lstm_mkldnn ${QUANT2_INT8_LSTM_SAVE_PATH}/lstm_fp32_model
${QUANT2_LSTM_MODEL_DIR}/lstm_quant
${QUANT2_INT8_LSTM_SAVE_PATH}/quant_lstm_input_data)
endif()
# Since the tests for Quant & INT8 comparison support only testing on Linux
# Since the tests for Quant & INT8 comparison support only testing on Linux
# with MKL-DNN, we remove it here to not test it on other systems.
list(REMOVE_ITEM TEST_OPS
test_mkldnn_int8_quantization_strategy
quant_int8_image_classification_comparison
quant_int8_nlp_comparison)
list(REMOVE_ITEM TEST_OPS test_mkldnn_int8_quantization_strategy
quant_int8_image_classification_comparison quant_int8_nlp_comparison)
#TODO(wanghaoshuang): Fix this unitest failed on GCC8.
LIST(REMOVE_ITEM TEST_OPS test_auto_pruning)
LIST(REMOVE_ITEM TEST_OPS test_filter_pruning)
list(REMOVE_ITEM TEST_OPS test_auto_pruning)
list(REMOVE_ITEM TEST_OPS test_filter_pruning)
# fix
if(WIN32)
SET(SINGLE_CARD_TEST_OPS
test_user_defined_quantization
test_quantization_scale_pass
test_quantization_pass
test_moving_average_abs_max_scale_op
test_imperative_qat_channelwise
test_imperative_qat
test_imperative_out_scale
test_graph)
LIST(REMOVE_ITEM TEST_OPS ${SINGLE_CARD_TEST_OPS})
foreach(src ${SINGLE_CARD_TEST_OPS})
py_test(${src} SRCS ${src}.py ENVS CUDA_VISIBLE_DEVICES=0)
endforeach()
set(SINGLE_CARD_TEST_OPS
test_user_defined_quantization
test_quantization_scale_pass
test_quantization_pass
test_moving_average_abs_max_scale_op
test_imperative_qat_channelwise
test_imperative_qat
test_imperative_out_scale
test_graph)
list(REMOVE_ITEM TEST_OPS ${SINGLE_CARD_TEST_OPS})
foreach(src ${SINGLE_CARD_TEST_OPS})
py_test(${src} SRCS ${src}.py ENVS CUDA_VISIBLE_DEVICES=0)
endforeach()
endif()
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
py_test(${src} SRCS ${src}.py)
endforeach()
# setting timeout value for old unittests
if(NOT WIN32)
set_tests_properties(test_post_training_quantization_lstm_model PROPERTIES TIMEOUT 120)
set_tests_properties(test_post_training_quantization_mobilenetv1 PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=NIGHTLY")
set_tests_properties(test_post_training_quantization_resnet50 PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=NIGHTLY")
set_tests_properties(test_post_training_quantization_mnist PROPERTIES TIMEOUT 120)
set_tests_properties(test_post_training_quantization_while PROPERTIES TIMEOUT 120)
set_tests_properties(test_imperative_ptq PROPERTIES TIMEOUT 120)
set_tests_properties(test_weight_quantization_mobilenetv1 PROPERTIES TIMEOUT 120)
set_tests_properties(test_post_training_quantization_lstm_model
PROPERTIES TIMEOUT 120)
set_tests_properties(test_post_training_quantization_mobilenetv1
PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=NIGHTLY")
set_tests_properties(test_post_training_quantization_resnet50
PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=NIGHTLY")
set_tests_properties(test_post_training_quantization_mnist PROPERTIES TIMEOUT
120)
set_tests_properties(test_post_training_quantization_while PROPERTIES TIMEOUT
120)
set_tests_properties(test_imperative_ptq PROPERTIES TIMEOUT 120)
set_tests_properties(test_weight_quantization_mobilenetv1 PROPERTIES TIMEOUT
120)
endif()
set_tests_properties(test_graph PROPERTIES TIMEOUT 120)
......@@ -359,23 +530,30 @@ set_tests_properties(test_imperative_out_scale PROPERTIES TIMEOUT 200)
set_tests_properties(test_imperative_qat_user_defined PROPERTIES TIMEOUT 200)
if(LINUX AND WITH_MKLDNN)
set_tests_properties(test_quant2_int8_mobilenetv1_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(convert_model2dot_ernie PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_resnet50_channelwise_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_mobilenetv2_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_resnet50_range_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(save_quant2_model_resnet50 PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_resnet50_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_mobilenetv1_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_ernie_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_googlenet_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_resnet50_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_lstm_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_mobilenetv1_mkldnn PROPERTIES TIMEOUT
120)
set_tests_properties(convert_model2dot_ernie PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_resnet50_channelwise_mkldnn
PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_mobilenetv2_mkldnn PROPERTIES TIMEOUT
120)
set_tests_properties(test_quant2_int8_resnet50_range_mkldnn PROPERTIES TIMEOUT
120)
set_tests_properties(save_quant2_model_resnet50 PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_resnet50_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_mobilenetv1_mkldnn PROPERTIES TIMEOUT
120)
set_tests_properties(test_quant2_int8_ernie_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant_int8_googlenet_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_resnet50_mkldnn PROPERTIES TIMEOUT 120)
set_tests_properties(test_quant2_int8_lstm_mkldnn PROPERTIES TIMEOUT 120)
endif()
if(APPLE)
set_tests_properties(test_post_training_quantization_mnist PROPERTIES TIMEOUT 300)
set_tests_properties(test_post_training_quantization_while PROPERTIES TIMEOUT 300)
set_tests_properties(test_imperative_ptq PROPERTIES TIMEOUT 300)
set_tests_properties(test_imperative_skip_op PROPERTIES TIMEOUT 300)
set_tests_properties(test_post_training_quantization_mnist PROPERTIES TIMEOUT
300)
set_tests_properties(test_post_training_quantization_while PROPERTIES TIMEOUT
300)
set_tests_properties(test_imperative_ptq PROPERTIES TIMEOUT 300)
set_tests_properties(test_imperative_skip_op PROPERTIES TIMEOUT 300)
endif()
......@@ -35,8 +35,9 @@ from paddle.fluid.framework import _test_eager_guard
from imperative_test_utils import fix_model_dict, ImperativeLenet, ImperativeLinearBn
from imperative_test_utils import ImperativeLinearBn_hook
_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
_logger = get_logger(__name__,
logging.INFO,
fmt='%(asctime)s-%(levelname)s: %(message)s')
class TestFuseLinearBn(unittest.TestCase):
......@@ -55,15 +56,15 @@ class TestFuseLinearBn(unittest.TestCase):
quant_h = ptq.quantize(model_h, fuse=True, fuse_list=f_l)
for name, layer in quant_model.named_sublayers():
if name in f_l:
assert not (isinstance(layer, nn.BatchNorm1D) or
isinstance(layer, nn.BatchNorm2D))
assert not (isinstance(layer, nn.BatchNorm1D)
or isinstance(layer, nn.BatchNorm2D))
out = model(inputs)
out_h = model_h(inputs)
out_quant = quant_model(inputs)
out_quant_h = quant_h(inputs)
cos_sim_func = nn.CosineSimilarity(axis=0)
print('fuse linear+bn',
cos_sim_func(out.flatten(), out_quant.flatten()))
print('fuse linear+bn', cos_sim_func(out.flatten(),
out_quant.flatten()))
print(cos_sim_func(out_h.flatten(), out_quant_h.flatten()))
......@@ -87,8 +88,8 @@ class TestImperativePTQ(unittest.TestCase):
def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(
target_folder, zip_path)
os.system(cmd)
def download_model(self, data_url, data_md5, folder_name):
......@@ -123,8 +124,8 @@ class TestImperativePTQ(unittest.TestCase):
def model_test(self, model, batch_num=-1, batch_size=8):
model.eval()
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
test_reader = paddle.batch(paddle.dataset.mnist.test(),
batch_size=batch_size)
eval_acc_top1_list = []
for batch_id, data in enumerate(test_reader()):
......@@ -157,8 +158,8 @@ class TestImperativePTQ(unittest.TestCase):
[inference_program, feed_target_names, fetch_targets
] = (paddle.static.load_inference_model(program_path, exe))
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
test_reader = paddle.batch(paddle.dataset.mnist.test(),
batch_size=batch_size)
top1_correct_num = 0.
total_num = 0.
......@@ -203,13 +204,13 @@ class TestImperativePTQ(unittest.TestCase):
self.batch_size)
input_spec = [
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
paddle.static.InputSpec(shape=[None, 1, 28, 28], dtype='float32')
]
with tempfile.TemporaryDirectory(prefix="imperative_ptq_") as tmpdir:
save_path = os.path.join(tmpdir, "model")
self.ptq.save_quantized_model(
model=quant_model, path=save_path, input_spec=input_spec)
self.ptq.save_quantized_model(model=quant_model,
path=save_path,
input_spec=input_spec)
print('Quantized model saved in {%s}' % save_path)
after_acc_top1 = self.model_test(quant_model, self.batch_num,
......@@ -225,13 +226,11 @@ class TestImperativePTQ(unittest.TestCase):
print('After converted acc_top1: %s' % after_acc_top1)
print('Infer acc_top1: %s' % infer_acc_top1)
self.assertTrue(
after_acc_top1 >= self.eval_acc_top1,
msg="The test acc {%f} is less than {%f}." %
(after_acc_top1, self.eval_acc_top1))
self.assertTrue(
infer_acc_top1 >= after_acc_top1,
msg='The acc is lower after converting model.')
self.assertTrue(after_acc_top1 >= self.eval_acc_top1,
msg="The test acc {%f} is less than {%f}." %
(after_acc_top1, self.eval_acc_top1))
self.assertTrue(infer_acc_top1 >= after_acc_top1,
msg='The acc is lower after converting model.')
end_time = time.time()
print("total time: %ss \n" % (end_time - start_time))
......@@ -243,6 +242,7 @@ class TestImperativePTQ(unittest.TestCase):
class TestImperativePTQfuse(TestImperativePTQ):
def func_ptq(self):
start_time = time.time()
......@@ -261,19 +261,19 @@ class TestImperativePTQfuse(TestImperativePTQ):
quant_model = self.ptq.quantize(model, fuse=True, fuse_list=f_l)
for name, layer in quant_model.named_sublayers():
if name in f_l:
assert not (isinstance(layer, nn.BatchNorm1D) or
isinstance(layer, nn.BatchNorm2D))
assert not (isinstance(layer, nn.BatchNorm1D)
or isinstance(layer, nn.BatchNorm2D))
before_acc_top1 = self.model_test(quant_model, self.batch_num,
self.batch_size)
input_spec = [
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
paddle.static.InputSpec(shape=[None, 1, 28, 28], dtype='float32')
]
with tempfile.TemporaryDirectory(prefix="imperative_ptq_") as tmpdir:
save_path = os.path.join(tmpdir, "model")
self.ptq.save_quantized_model(
model=quant_model, path=save_path, input_spec=input_spec)
self.ptq.save_quantized_model(model=quant_model,
path=save_path,
input_spec=input_spec)
print('Quantized model saved in {%s}' % save_path)
after_acc_top1 = self.model_test(quant_model, self.batch_num,
......@@ -291,15 +291,13 @@ class TestImperativePTQfuse(TestImperativePTQ):
#Check whether the quant_model is correct after converting.
#The acc of quantized model should be higher than 0.95.
self.assertTrue(
after_acc_top1 >= self.eval_acc_top1,
msg="The test acc {%f} is less than {%f}." %
(after_acc_top1, self.eval_acc_top1))
self.assertTrue(after_acc_top1 >= self.eval_acc_top1,
msg="The test acc {%f} is less than {%f}." %
(after_acc_top1, self.eval_acc_top1))
#Check the saved infer_model.The acc of infer model
#should not be lower than the one of dygraph model.
self.assertTrue(
infer_acc_top1 >= after_acc_top1,
msg='The acc is lower after converting model.')
self.assertTrue(infer_acc_top1 >= after_acc_top1,
msg='The acc is lower after converting model.')
end_time = time.time()
print("total time: %ss \n" % (end_time - start_time))
......@@ -311,6 +309,7 @@ class TestImperativePTQfuse(TestImperativePTQ):
class TestImperativePTQHist(TestImperativePTQ):
def set_vars(self):
config = PTQConfig(HistQuantizer(), AbsmaxQuantizer())
self.ptq = ImperativePTQ(config)
......@@ -332,13 +331,14 @@ class TestImperativePTQHist(TestImperativePTQ):
class TestImperativePTQKL(TestImperativePTQ):
def set_vars(self):
config = PTQConfig(KLQuantizer(), PerChannelAbsmaxQuantizer())
self.ptq = ImperativePTQ(config)
self.batch_num = 10
self.batch_size = 10
self.eval_acc_top1 = 1.0
self.eval_acc_top1 = 0.98
conv2d_1_wt_thresholds = [
0.18116560578346252, 0.17079241573810577, 0.1702047884464264,
......
......@@ -34,6 +34,7 @@ np.random.seed(0)
class TestPostTrainingQuantization(unittest.TestCase):
def setUp(self):
self.download_path = 'int8/download'
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
......@@ -44,8 +45,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
try:
os.system("mkdir -p " + self.int8_model_path)
except Exception as e:
print("Failed to create {} due to {}".format(self.int8_model_path,
str(e)))
print("Failed to create {} due to {}".format(
self.int8_model_path, str(e)))
sys.exit(-1)
def tearDown(self):
......@@ -53,8 +54,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(
target_folder, zip_path)
os.system(cmd)
def download_model(self, data_url, data_md5, folder_name):
......@@ -68,6 +69,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
return data_cache_folder
def get_batch_reader(self, data_path, place):
def reader():
with open(data_path, 'rb') as in_file:
while True:
......@@ -80,15 +82,14 @@ class TestPostTrainingQuantization(unittest.TestCase):
seq_len = (alllen >> 16) & 0xFFFF
label = in_file.read(4 * label_len)
label = np.frombuffer(
label, dtype=np.int32).reshape([len(label) // 4])
label = np.frombuffer(label, dtype=np.int32).reshape(
[len(label) // 4])
if label.shape[0] != 1 or label[0] > 6350:
continue
feat = in_file.read(4 * seq_len * 8)
feat = np.frombuffer(
feat,
dtype=np.float32).reshape([len(feat) // 4 // 8, 8])
feat = np.frombuffer(feat, dtype=np.float32).reshape(
[len(feat) // 4 // 8, 8])
lod_feat = [feat.shape[0]]
minputs = fluid.create_lod_tensor(feat, [lod_feat], place)
......@@ -97,6 +98,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
return reader
def get_simple_reader(self, data_path, place):
def reader():
with open(data_path, 'rb') as in_file:
while True:
......@@ -109,15 +111,14 @@ class TestPostTrainingQuantization(unittest.TestCase):
seq_len = (alllen >> 16) & 0xFFFF
label = in_file.read(4 * label_len)
label = np.frombuffer(
label, dtype=np.int32).reshape([len(label) // 4])
label = np.frombuffer(label, dtype=np.int32).reshape(
[len(label) // 4])
if label.shape[0] != 1 or label[0] > 6350:
continue
feat = in_file.read(4 * seq_len * 8)
feat = np.frombuffer(
feat,
dtype=np.float32).reshape([len(feat) // 4 // 8, 8])
feat = np.frombuffer(feat, dtype=np.float32).reshape(
[len(feat) // 4 // 8, 8])
lod_feat = [feat.shape[0]]
minputs = fluid.create_lod_tensor(feat, [lod_feat], place)
......@@ -178,18 +179,17 @@ class TestPostTrainingQuantization(unittest.TestCase):
scope = fluid.global_scope()
batch_generator = self.get_batch_reader(data_path, place)
ptq = PostTrainingQuantization(
executor=exe,
model_dir=model_path,
batch_generator=batch_generator,
batch_nums=batch_nums,
algo=algo,
quantizable_op_type=quantizable_op_type,
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
is_use_cache_file=is_use_cache_file)
ptq = PostTrainingQuantization(executor=exe,
model_dir=model_path,
batch_generator=batch_generator,
batch_nums=batch_nums,
algo=algo,
quantizable_op_type=quantizable_op_type,
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model_path)
......@@ -223,10 +223,11 @@ class TestPostTrainingQuantization(unittest.TestCase):
print("Start post training quantization for {0} on {1} samples ...".
format(model_name, quant_iterations))
self.generate_quantized_model(
fp32_model_path, data_path, algo, round_type, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model,
quant_iterations, onnx_format)
self.generate_quantized_model(fp32_model_path, data_path, algo,
round_type, quantizable_op_type,
is_full_quantize, is_use_cache_file,
is_optimize_model, quant_iterations,
onnx_format)
print("Start INT8 inference for {0} on {1} samples ...".format(
model_name, infer_iterations))
......@@ -245,6 +246,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
def test_post_training_avg(self):
model_name = "nlp_lstm_fp32_model"
model_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
......@@ -268,6 +270,7 @@ class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
def test_post_training_avg_onnx_format(self):
model_name = "nlp_lstm_fp32_model"
model_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
......@@ -285,23 +288,22 @@ class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
infer_iterations = 100
quant_iterations = 10
onnx_format = True
self.run_test(
model_name,
model_url,
model_md5,
data_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
self.run_test(model_name,
model_url,
model_md5,
data_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
if __name__ == '__main__':
......
......@@ -33,6 +33,7 @@ np.random.seed(0)
class TestPostTrainingQuantization(unittest.TestCase):
def setUp(self):
self.root_path = tempfile.TemporaryDirectory()
self.int8_model_path = os.path.join(self.root_path.name,
......@@ -43,8 +44,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
try:
os.system("mkdir -p " + self.int8_model_path)
except Exception as e:
print("Failed to create {} due to {}".format(self.int8_model_path,
str(e)))
print("Failed to create {} due to {}".format(
self.int8_model_path, str(e)))
sys.exit(-1)
def tearDown(self):
......@@ -52,8 +53,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(
target_folder, zip_path)
os.system(cmd)
def download_model(self, data_url, data_md5, folder_name):
......@@ -115,26 +116,27 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_size=10,
batch_nums=10,
onnx_format=False,
skip_tensor_list=None):
skip_tensor_list=None,
bias_correction=False):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
val_reader = paddle.dataset.mnist.train()
ptq = PostTrainingQuantization(
executor=exe,
model_dir=model_path,
sample_generator=val_reader,
batch_size=batch_size,
batch_nums=batch_nums,
algo=algo,
quantizable_op_type=quantizable_op_type,
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
skip_tensor_list=skip_tensor_list,
is_use_cache_file=is_use_cache_file)
ptq = PostTrainingQuantization(executor=exe,
model_dir=model_path,
sample_generator=val_reader,
batch_size=batch_size,
batch_nums=batch_nums,
algo=algo,
quantizable_op_type=quantizable_op_type,
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
bias_correction=bias_correction,
onnx_format=onnx_format,
skip_tensor_list=skip_tensor_list,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model_path)
......@@ -152,6 +154,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_size=10,
infer_iterations=10,
quant_iterations=5,
bias_correction=False,
onnx_format=False,
skip_tensor_list=None):
......@@ -160,20 +163,23 @@ class TestPostTrainingQuantization(unittest.TestCase):
print("Start FP32 inference for {0} on {1} images ...".format(
model_name, infer_iterations * batch_size))
(fp32_throughput, fp32_latency, fp32_acc1) = self.run_program(
origin_model_path, batch_size, infer_iterations)
(fp32_throughput, fp32_latency,
fp32_acc1) = self.run_program(origin_model_path, batch_size,
infer_iterations)
print("Start INT8 post training quantization for {0} on {1} images ...".
format(model_name, quant_iterations * batch_size))
self.generate_quantized_model(
origin_model_path, algo, round_type, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model, batch_size,
quant_iterations, onnx_format, skip_tensor_list)
self.generate_quantized_model(origin_model_path, algo, round_type,
quantizable_op_type, is_full_quantize,
is_use_cache_file, is_optimize_model,
batch_size, quant_iterations, onnx_format,
skip_tensor_list, bias_correction)
print("Start INT8 inference for {0} on {1} images ...".format(
model_name, infer_iterations * batch_size))
(int8_throughput, int8_latency, int8_acc1) = self.run_program(
self.int8_model_path, batch_size, infer_iterations)
(int8_throughput, int8_latency,
int8_acc1) = self.run_program(self.int8_model_path, batch_size,
infer_iterations)
print("---Post training quantization of {} method---".format(algo))
print(
......@@ -191,6 +197,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
def test_post_training_kl(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -212,6 +219,7 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
class TestPostTraininghistForMnist(TestPostTrainingQuantization):
def test_post_training_hist(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -233,6 +241,7 @@ class TestPostTraininghistForMnist(TestPostTrainingQuantization):
class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
def test_post_training_mse(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -254,6 +263,7 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
def test_post_training_mse(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -275,6 +285,7 @@ class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
def test_post_training_avg(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -296,6 +307,7 @@ class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
def test_post_training_abs_max(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -317,6 +329,7 @@ class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
def test_post_training_mse(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -331,13 +344,25 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
batch_size = 10
infer_iterations = 50
quant_iterations = 5
self.run_test(model_name, data_url, data_md5, algo, round_type,
quantizable_op_type, is_full_quantize, is_use_cache_file,
is_optimize_model, diff_threshold, batch_size,
infer_iterations, quant_iterations)
bias_correction = True
self.run_test(model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
bias_correction=bias_correction)
class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
def test_post_training_kl(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -359,6 +384,7 @@ class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
def test_post_training_mse_onnx_format(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -374,25 +400,25 @@ class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
batch_size = 10
infer_iterations = 50
quant_iterations = 5
self.run_test(
model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
self.run_test(model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
class TestPostTrainingmseForMnistONNXFormatFullQuant(
TestPostTrainingQuantization):
def test_post_training_mse_onnx_format_full_quant(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -408,24 +434,24 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
batch_size = 10
infer_iterations = 50
quant_iterations = 5
self.run_test(
model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
self.run_test(model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
def test_post_training_avg_skip_op(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
......@@ -441,21 +467,20 @@ class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
infer_iterations = 50
quant_iterations = 5
skip_tensor_list = ["fc_0.w_0"]
self.run_test(
model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
skip_tensor_list=skip_tensor_list)
self.run_test(model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
skip_tensor_list=skip_tensor_list)
if __name__ == '__main__':
......
......@@ -83,6 +83,7 @@ def _reader_creator(file_list,
color_jitter=False,
rotate=False,
data_dir=DATA_DIR):
def reader():
with open(file_list) as flist:
full_lines = [line.strip() for line in flist]
......@@ -97,8 +98,10 @@ def _reader_creator(file_list,
continue
yield img_path, int(label)
mapper = functools.partial(
process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
mapper = functools.partial(process_image,
mode=mode,
color_jitter=color_jitter,
rotate=rotate)
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
......@@ -109,6 +112,7 @@ def val(data_dir=DATA_DIR):
class TestPostTrainingQuantization(unittest.TestCase):
def setUp(self):
self.int8_download = 'int8/download'
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
......@@ -156,8 +160,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(
target_folder, zip_path)
os.system(cmd)
def download_data(self, data_urls, data_md5s, folder_name, is_model=True):
......@@ -210,11 +214,12 @@ class TestPostTrainingQuantization(unittest.TestCase):
label = label.reshape([-1, 1])
t1 = time.time()
_, acc1, _ = exe.run(
infer_program,
feed={feed_dict[0]: image,
feed_dict[1]: label},
fetch_list=fetch_targets)
_, acc1, _ = exe.run(infer_program,
feed={
feed_dict[0]: image,
feed_dict[1]: label
},
fetch_list=fetch_targets)
t2 = time.time()
period = t2 - t1
periods.append(period)
......@@ -241,13 +246,12 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_full_quantize=False,
is_use_cache_file=False,
is_optimize_model=False,
onnx_format=False,
skip_tensor_list=None):
onnx_format=False):
try:
os.system("mkdir " + self.int8_model)
except Exception as e:
print("Failed to create {} due to {}".format(self.int8_model,
str(e)))
print("Failed to create {} due to {}".format(
self.int8_model, str(e)))
sys.exit(-1)
place = fluid.CPUPlace()
......@@ -255,18 +259,16 @@ class TestPostTrainingQuantization(unittest.TestCase):
scope = fluid.global_scope()
val_reader = val()
ptq = PostTrainingQuantization(
executor=exe,
sample_generator=val_reader,
model_dir=model_path,
algo=algo,
quantizable_op_type=quantizable_op_type,
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
skip_tensor_list=skip_tensor_list,
is_use_cache_file=is_use_cache_file)
ptq = PostTrainingQuantization(executor=exe,
sample_generator=val_reader,
model_dir=model_path,
algo=algo,
quantizable_op_type=quantizable_op_type,
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model)
......@@ -281,8 +283,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=False,
skip_tensor_list=None):
onnx_format=False):
infer_iterations = self.infer_iterations
batch_size = self.batch_size
sample_iterations = self.sample_iterations
......@@ -291,20 +292,22 @@ class TestPostTrainingQuantization(unittest.TestCase):
print("Start FP32 inference for {0} on {1} images ...".format(
model, infer_iterations * batch_size))
(fp32_throughput, fp32_latency, fp32_acc1) = self.run_program(
model_cache_folder + "/model", batch_size, infer_iterations)
(fp32_throughput, fp32_latency,
fp32_acc1) = self.run_program(model_cache_folder + "/model",
batch_size, infer_iterations)
print("Start INT8 post training quantization for {0} on {1} images ...".
format(model, sample_iterations * batch_size))
self.generate_quantized_model(
model_cache_folder + "/model", quantizable_op_type, algo,
round_type, is_full_quantize, is_use_cache_file, is_optimize_model,
onnx_format, skip_tensor_list)
self.generate_quantized_model(model_cache_folder + "/model",
quantizable_op_type, algo, round_type,
is_full_quantize, is_use_cache_file,
is_optimize_model, onnx_format)
print("Start INT8 inference for {0} on {1} images ...".format(
model, infer_iterations * batch_size))
(int8_throughput, int8_latency, int8_acc1) = self.run_program(
self.int8_model, batch_size, infer_iterations)
(int8_throughput, int8_latency,
int8_acc1) = self.run_program(self.int8_model, batch_size,
infer_iterations)
print("---Post training quantization of {} method---".format(algo))
print(
......@@ -322,6 +325,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
def test_post_training_kl_mobilenetv1(self):
model = "MobileNet-V1"
algo = "KL"
......@@ -346,6 +350,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
def test_post_training_avg_mobilenetv1(self):
model = "MobileNet-V1"
algo = "avg"
......@@ -369,6 +374,7 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
def test_post_training_hist_mobilenetv1(self):
model = "MobileNet-V1"
algo = "hist"
......@@ -392,6 +398,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
def test_post_training_abs_max_mobilenetv1(self):
model = "MobileNet-V1"
algo = "abs_max"
......@@ -415,9 +422,10 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
def test_post_training_onnx_format_mobilenetv1(self):
model = "MobileNet-V1"
algo = "avg"
algo = "emd"
round_type = "round"
data_urls = [
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
......@@ -433,51 +441,17 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
is_optimize_model = True
onnx_format = True
diff_threshold = 0.05
self.run_test(
model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=onnx_format)
class TestPostTrainingForMobilenetv1SkipOP(TestPostTrainingQuantization):
def test_post_training_mobilenetv1_skip(self):
model = "MobileNet-V1"
algo = "avg"
round_type = "round"
data_urls = [
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
quantizable_op_type = [
"conv2d",
"depthwise_conv2d",
"mul",
]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = True
diff_threshold = 0.025
skip_tensor_list = ["fc_0.w_0"]
self.run_test(
model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
skip_tensor_list=skip_tensor_list)
self.run_test(model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=onnx_format)
if __name__ == '__main__':
......
......@@ -21,6 +21,7 @@ paddle.enable_static()
class TestPostTrainingForResnet50(TestPostTrainingQuantization):
def test_post_training_resnet50(self):
model = "ResNet-50"
algo = "min_max"
......@@ -40,6 +41,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
def test_post_training_resnet50(self):
model = "ResNet-50"
algo = "min_max"
......@@ -54,18 +56,17 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
is_optimize_model = False
diff_threshold = 0.025
onnx_format = True
self.run_test(
model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=onnx_format)
self.run_test(model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=onnx_format)
if __name__ == '__main__':
......
......@@ -21,8 +21,6 @@ import math
from op_test import OpTest
# numpy.round has different behavior in comparision to c++ round function
# so we use round_c instead of numpy.round to align the output data
def round_c_single_element(val):
dtype = type(val)
if val >= 0:
......@@ -30,6 +28,7 @@ def round_c_single_element(val):
return dtype(np.ceil(val - 0.5))
# rounding to nearest ties away from zero
round_c = np.vectorize(round_c_single_element)
......@@ -41,17 +40,30 @@ def get_compute_type(dtype):
class TestFakeQuantizeAbsMaxOp(OpTest):
def setUp(self):
self.op_type = 'fake_quantize_abs_max'
self.attrs = {'bit_length': 8}
def _fake_quantize_abs_max(self, dtype, input_shape, distribution):
def _fake_quantize_abs_max(self,
dtype,
input_shape,
distribution,
round_type='TiesAwayFromZero'):
input_data = distribution(input_shape).astype(dtype)
compute_type = get_compute_type(dtype)
scale = np.max(np.abs(input_data))
bnt = (1 << (self.attrs['bit_length'] - 1)) - 1
inv_scale = 1.0 / (scale + 1e-6) if scale < 1e-30 else 1.0 / scale
output_data = round_c(input_data.astype(compute_type) * inv_scale * bnt)
if round_type == 'TiesToEven':
round_out = np.round(
input_data.astype(compute_type) * inv_scale * bnt)
output_data = np.clip(round_out, -bnt - 1, bnt)
self.attrs['round_type'] = 0
else:
output_data = round_c(
input_data.astype(compute_type) * inv_scale * bnt)
self.attrs['round_type'] = 1
self.inputs = {'X': input_data}
self.outputs = {'Out': output_data, 'OutScale': scale}
self.dtype = dtype
......@@ -60,6 +72,11 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
def test_fake_quantize_abs_max(self):
self._fake_quantize_abs_max(np.float32, (124, 240), np.random.random)
def test_fake_quantize_abs_max_round1(self):
self._fake_quantize_abs_max(np.float32, (124, 240),
np.random.random,
round_type='TiesToEven')
def test_fake_quantize_abs_max_float16(self):
self._fake_quantize_abs_max(np.float16, (124, 240), np.random.random)
......@@ -72,21 +89,33 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
def setUp(self):
self.op_type = 'fake_channel_wise_quantize_abs_max'
self.attrs = {'bit_length': 8}
def _fake_channel_wise_quantize_abs_max(self, dtype, input_shape,
quant_axis, distribution):
def _fake_channel_wise_quantize_abs_max(self,
dtype,
input_shape,
quant_axis,
distribution,
round_type='TiesToEven'):
assert quant_axis in [0, 1], 'quant_axis should be 0 or 1.'
input_data = distribution(input_shape).astype(dtype)
compute_type = get_compute_type(dtype)
bnt = (1 << (self.attrs['bit_length'] - 1)) - 1
compute_axis = tuple(
i for i in range(len(input_shape)) if i != quant_axis)
compute_axis = tuple(i for i in range(len(input_shape))
if i != quant_axis)
scale_broadcast = np.amax(input_data, axis=compute_axis, keepdims=True)
output_data = round_c(bnt * input_data.astype(compute_type) /
scale_broadcast)
if round_type == 'TiesToEven':
round_out = np.round(
input_data.astype(compute_type) / scale_broadcast * bnt)
output_data = np.clip(round_out, -bnt - 1, bnt)
self.attrs['round_type'] = 0
else:
output_data = round_c(bnt * input_data.astype(compute_type) /
scale_broadcast)
self.attrs['round_type'] = 1
if quant_axis == 1:
scale_broadcast = np.transpose(scale_broadcast,
(1, ) + compute_axis)
......@@ -100,19 +129,24 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
def test_fake_channel_wise_quantize_abs_max(self):
dtype_options = [np.float32, np.float16]
input_shape_quant_axis_options = [[(20, 15, 6, 6), 0],
[(15, 20, 5, 5), 1], [(30, 15), 0],
[(30, 15), 1]]
for dtype, input_shape_quant_axis in itertools.product(
dtype_options, input_shape_quant_axis_options):
[(20, 15, 6, 6), 1], [(30, 30), 0],
[(30, 30), 1]]
round_type_options = ['TiesToEven', 'TiesAwayFromZero']
for dtype, input_shape_quant_axis, round_type in itertools.product(
dtype_options, input_shape_quant_axis_options,
round_type_options):
input_shape, quant_axis = input_shape_quant_axis
with self.subTest(
dtype=dtype, input_shape=input_shape,
quant_axis=quant_axis):
with self.subTest(dtype=dtype,
input_shape=input_shape,
quant_axis=quant_axis,
round_type=round_type):
self._fake_channel_wise_quantize_abs_max(
dtype, input_shape, quant_axis, np.random.random)
dtype, input_shape, quant_axis, np.random.random,
round_type)
class TestFakeQuantizeRangeAbsMaxOp(OpTest):
def setUp(self):
self.op_type = 'fake_quantize_range_abs_max'
self.attrs = {'bit_length': 5, 'window_size': 1}
......@@ -121,7 +155,8 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
dtype,
input_shape,
distribution,
is_test=False):
is_test=False,
round_type='TiesToEven'):
input_data = distribution(input_shape).astype(dtype)
compute_type = get_compute_type(dtype)
bnt = (1 << (self.attrs['bit_length'] - 1)) - 1
......@@ -130,11 +165,19 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
out_scale[0] = np.max(np.abs(input_data))
if is_test:
out_scale[0] = in_scale[0] = out_scale[0] - 1.0
clip_data = np.clip(input_data, -in_scale, in_scale)
if round_type == 'TiesToEven':
round_out = np.round(
input_data.astype(compute_type) / out_scale[0] * bnt)
self.attrs['round_type'] = 0
output_data = np.clip(round_out, -bnt - 1, bnt)
else:
clip_data = input_data
output_data = round_c(
clip_data.astype(compute_type) / out_scale[0] * bnt)
if is_test:
clip_data = np.clip(input_data, -in_scale, in_scale)
else:
clip_data = input_data
output_data = round_c(
clip_data.astype(compute_type) / out_scale[0] * bnt)
self.attrs['round_type'] = 1
self.inputs = {
'X': input_data,
'Iter': np.zeros(1).astype(np.int64),
......@@ -150,18 +193,24 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
self.check_output()
def test_fake_quantize_range_abs_max(self):
dtype_options = [np.float32, np.float16]
dtype_options = [np.float16, np.float32]
is_test_options = [False, True]
for dtype, is_test in itertools.product(dtype_options, is_test_options):
round_type_options = ['TiesToEven', 'TiesAwayFromZero']
for dtype, is_test, round_type in itertools.product(
dtype_options, is_test_options, round_type_options):
self.attrs['bit_length'] = 8 if is_test else 5
with self.subTest(dtype=dtype, is_test=is_test):
with self.subTest(dtype=dtype,
is_test=is_test,
round_type=round_type):
self._fake_quantize_range_abs_max(
dtype, (8, 16, 7, 7),
lambda shape: (np.random.random(shape) - 0.5) * 10,
is_test=is_test)
dtype, (8, 16, 6, 6),
lambda shape: (np.random.random(shape) - 0.4) * 10,
is_test=is_test,
round_type=round_type)
class TestMovingAverageAbsMaxScaleOp(OpTest):
def setUp(self):
self.op_type = 'moving_average_abs_max_scale'
self.attrs = {'moving_rate': float(0.9), 'is_test': False}
......@@ -194,6 +243,7 @@ class TestMovingAverageAbsMaxScaleOp(OpTest):
class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
def setUp(self):
self.op_type = 'fake_quantize_moving_average_abs_max'
self.attrs = {'bit_length': 5, 'moving_rate': 0.9, 'is_test': False}
......@@ -203,7 +253,8 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
input_shape,
distribution,
dequantize=False,
with_gradient=False):
with_gradient=False,
round_type='TiesAwayFromZero'):
input_data = distribution(input_shape).astype(dtype)
compute_type = get_compute_type(dtype)
bnt = (1 << (self.attrs['bit_length'] - 1)) - 1
......@@ -217,12 +268,20 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
np.abs(input_data))
out_state[0] = self.attrs['moving_rate'] * in_state[0] + 1.0
out_scale = out_accum / out_state
round_data = round_c(input_data.astype(compute_type) / out_scale * bnt)
if round_type == 'TiesToEven':
round_out = np.round(
input_data.astype(compute_type) / out_scale * bnt)
quant_data = np.clip(round_out, -bnt - 1, bnt)
self.attrs['round_type'] = 0
else:
quant_data = round_c(
input_data.astype(compute_type) / out_scale * bnt)
self.attrs['round_type'] = 1
if dequantize:
output_data = (round_data * out_scale / bnt).astype(dtype)
output_data = (quant_data * out_scale / bnt).astype(dtype)
self.op_type = 'fake_quantize_dequantize_moving_average_abs_max'
else:
output_data = round_data.astype(dtype)
output_data = quant_data.astype(dtype)
self.inputs = {
'X': input_data,
'InScale': in_scale,
......@@ -251,25 +310,39 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
self._fake_quantize_moving_average_abs_max(np.float16, (8, 16, 7, 7),
np.random.random)
def test_fake_quantize_moving_average_abs_max_round1(self):
self._fake_quantize_moving_average_abs_max(np.float32, (8, 16, 7, 7),
np.random.random,
round_type='TiesToEven')
def test_fake_quantize_dequantize_moving_average_abs_max(self):
self._fake_quantize_moving_average_abs_max(
np.float32, (8, 16, 7, 7),
np.random.random,
dequantize=True,
with_gradient=True)
self._fake_quantize_moving_average_abs_max(np.float32, (8, 16, 7, 7),
np.random.random,
dequantize=True,
with_gradient=True)
class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
def setUp(self):
self.op_type = 'fake_quantize_dequantize_abs_max'
self.attrs = {'bit_length': 8}
def _fake_quantize_dequantize_abs_max(self, dtype, input_shape,
distribution):
def _fake_quantize_dequantize_abs_max(self,
dtype,
input_shape,
distribution,
round_type='TiesAwayFromZero'):
input_data = distribution(input_shape).astype(dtype)
scale = np.max(np.abs(input_data)).astype(dtype)
bnt = (1 << (self.attrs['bit_length'] - 1)) - 1
output_data = round_c(input_data / scale * bnt) * scale / bnt
if round_type == 'TiesToEven':
round_out = np.round(input_data / scale * bnt)
output_data = np.clip(round_out, -bnt - 1, bnt) * scale / bnt
self.attrs['round_type'] = 0
else:
output_data = round_c(input_data / scale * bnt) * scale / bnt
self.attrs['round_type'] = 1
self.inputs = {'X': input_data}
self.outputs = {
'Out': output_data,
......@@ -284,24 +357,41 @@ class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
self._fake_quantize_dequantize_abs_max(np.float32, (124, 240),
np.random.random)
def test_fake_quantize_dequantize_abs_max_round1(self):
self._fake_quantize_dequantize_abs_max(np.float32, (124, 240),
np.random.random,
round_type='TiesToEven')
class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
def setUp(self):
self.op_type = 'fake_channel_wise_quantize_dequantize_abs_max'
self.attrs = {'bit_length': 8}
def _fake_channel_wise_quantize_dequantize_abs_max(
self, dtype, input_shape, quant_axis, distribution):
def _fake_channel_wise_quantize_dequantize_abs_max(self,
dtype,
input_shape,
quant_axis,
distribution,
round_type='TiesToEven'):
assert quant_axis in [0, 1], 'quant_axis should be 0 or 1.'
input_data = distribution(input_shape).astype(dtype)
compute_type = get_compute_type(dtype)
bnt = (1 << (self.attrs['bit_length'] - 1)) - 1
output_data = input_data.copy().astype(compute_type)
compute_axis = tuple(
i for i in range(len(input_shape)) if i != quant_axis)
compute_axis = tuple(i for i in range(len(input_shape))
if i != quant_axis)
scale_broadcast = np.amax(input_data, axis=compute_axis, keepdims=True)
output_data = round_c(bnt * output_data /
scale_broadcast) * scale_broadcast / bnt
if round_type == 'TiesToEven':
round_out = np.round(bnt * output_data / scale_broadcast)
output_data = np.clip(round_out, -bnt - 1,
bnt) * scale_broadcast / bnt
self.attrs['round_type'] = 0
else:
output_data = round_c(
bnt * output_data / scale_broadcast) * scale_broadcast / bnt
self.attrs['round_type'] = 1
if quant_axis == 1:
scale_broadcast = np.transpose(scale_broadcast,
(1, ) + compute_axis)
......@@ -318,10 +408,19 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
input_shape_quant_axis_options = [[(3, 4, 64, 64), 0],
[(15, 20, 5, 5), 1], [(30, 15), 0],
[(30, 15), 1]]
for input_shape, quant_axis in input_shape_quant_axis_options:
with self.subTest(input_shape=input_shape, quant_axis=quant_axis):
round_type_options = ['TiesToEven', 'TiesAwayFromZero']
for input_shape_quant_axis, round_type in itertools.product(
input_shape_quant_axis_options, round_type_options):
input_shape, quant_axis = input_shape_quant_axis
with self.subTest(input_shape=input_shape,
quant_axis=quant_axis,
round_type=round_type):
self._fake_channel_wise_quantize_dequantize_abs_max(
np.float32, input_shape, quant_axis, np.random.random)
np.float32,
input_shape,
quant_axis,
np.random.random,
round_type=round_type)
def quantize_max_abs(x, max_range):
......@@ -349,6 +448,7 @@ def channel_wise_quantize_max_abs(x, quant_bit=8, quant_axis=0):
class TestChannelWiseQuantizeOp(OpTest):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
......@@ -375,6 +475,7 @@ class TestChannelWiseQuantizeOp(OpTest):
class TestChannelWiseQuantizeOp1(TestChannelWiseQuantizeOp):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
......@@ -382,6 +483,7 @@ class TestChannelWiseQuantizeOp1(TestChannelWiseQuantizeOp):
class TestChannelWiseQuantizeOpTrain(OpTest):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
......@@ -410,6 +512,7 @@ class TestChannelWiseQuantizeOpTrain(OpTest):
class TestquantizeOp(OpTest):
def set_args(self):
self.bit_length = 8
self.quant_axis = -1
......@@ -436,6 +539,7 @@ class TestquantizeOp(OpTest):
class TestquantizeOpTrain(TestquantizeOp):
def set_args(self):
self.bit_length = 8
self.quant_axis = -1
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册