epsilon(float, Default 1e-05): A value added to the denominator for
epsilon(float): A value added to the denominator for
numerical stability. Default is 1e-5.
param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
...
...
@@ -1034,32 +1033,33 @@ class BatchNorm(layers.Layer):
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False): Make the input and output of batch norm reuse memory.
name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically.
moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
data_layout(string): NCHW|NHWC. Default: NCHW
in_place(bool): Make the input and output of batch norm reuse memory. Default: False
moving_mean_name(string|None): The name of moving_mean which store the global Mean. Default: None
moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
fuse_with_relu (bool): if True, this OP performs relu after batch norm.
use_global_stats(bool, Default False): Whether to use global mean and
fuse_with_relu (bool): if True, this OP performs relu after batch norm. Default: False
use_global_stats(bool): Whether to use global mean and
variance. In inference or test mode, set use_global_stats to true
or is_test to true, and the behavior is equivalent.
In train mode, when setting use_global_stats True, the global mean
and variance are also used during train period.
trainable_statistics(bool, Default False): Whether to calculate mean and var in eval mode. In eval mode, when
setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
and variance are also used during train period. Default: False
trainable_statistics(bool): Whether to calculate mean and var in eval mode. In eval mode, when
setting trainable_statistics True, mean and variance will be calculated by current batch statistics.Default: False
Returns:
Variable: A tensor variable which is the result after applying batch normalization on the input.
Examples:
.. code-block:: python
fc = fluid.FC('fc', size=200, param_attr='fc1.w')
hidden1 = fc(x)
batch_norm = fluid.BatchNorm("batch_norm", 10)
hidden2 = batch_norm(hidden1)
import paddle.fluid as fluid
with fluid.dygraph.guard():
fc = fluid.FC('fc', size=200, param_attr='fc1.w')
hidden1 = fc(x)
batch_norm = fluid.BatchNorm("batch_norm", 10)
hidden2 = batch_norm(hidden1)
"""
def__init__(self,
...
...
@@ -1196,14 +1196,16 @@ class Embedding(layers.Layer):
All the input variables are passed in as local variables to the LayerHelper constructor
Args:
name_scope: See base class.
size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size of the dictionary of embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup. Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`.
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
name_scope(str): The name of this class.
size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
of the dictionary of embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update. Default: False
is_distributed(bool): Whether to run lookup table from remote parameter server. Default: False.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters
it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`. Default: None.
param_attr(ParamAttr): Parameters for this layer. Default: None.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc. Default: 'float32'.
Returns:
Variable: The tensor variable storing the embeddings of the \
...
...
@@ -1213,15 +1215,19 @@ class Embedding(layers.Layer):
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.dygraph.base as base
import numpy as np
inp_word = np.array([[[1]]]).astype('int64')
dict_size = 20
with fluid.dygraph.guard():
emb = fluid.Embedding(
emb = fluid.dygraph.Embedding(
name_scope='embedding',
size=[dict_size, 32],
param_attr='emb.w',
is_sparse=False)
static_rlt3 = emb2(base.to_variable(inp_word))
static_rlt3 = emb(base.to_variable(inp_word))
"""
def__init__(self,
...
...
@@ -1232,7 +1238,6 @@ class Embedding(layers.Layer):
padding_idx=None,
param_attr=None,
dtype='float32'):
super(Embedding,self).__init__(name_scope,dtype)
self._size=size
self._is_sparse=is_sparse
...
...
@@ -1299,28 +1304,28 @@ class LayerNorm(layers.Layer):
* :math:`b`: the trainable bias parameter.
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
scale(bool): Whether to learn the adaptive gain :math:`g` after
normalization. Default True.
normalization. Default: True.
shift(bool): Whether to learn the adaptive bias :math:`b` after
normalization. Default True.
normalization. Default: True.
begin_norm_axis(int): The normalization will be performed along
dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
Default 1.
Default: 1.
epsilon(float): The small value added to the variance to prevent
division by zero. Default 1e-05.
division by zero. Default: 1e-05.
param_attr(ParamAttr|None): The parameter attribute for the learnable
gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as scale. The
:attr:`param_attr` is initialized as 1 if it is added. Default None.
:attr:`param_attr` is initialized as 1 if it is added. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as bias. The
:attr:`bias_attr` is initialized as 0 if it is added. Default None.
:attr:`bias_attr` is initialized as 0 if it is added. Default: None.
act(str): Activation to be applied to the output of layer normalizaiton.
Default None.
Default: None.
Returns:
Result after normalization
...
...
@@ -1414,7 +1419,7 @@ class GRUUnit(layers.Layer):
if origin_mode is True, then the equation of a gru step is from paper
`Learning Phrase Representations using RNN Encoder-Decoder for Statistical
@@ -2040,8 +2060,6 @@ class Conv2DTranspose(layers.Layer):
library is installed. Default: True.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: True.
Returns:
Variable: The tensor variable storing the convolution transpose result.
...
...
@@ -2173,11 +2191,11 @@ class SequenceConv(layers.Layer):
in the input parameters to the function.
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
num_filters (int): number of filters.
filter_size (int): the filter size (H and W).
filter_stride (int): stride of the filter.
padding (bool): if True, add paddings.
filter_size (int): the filter size (H and W). Default: 3.
filter_stride (int): stride of the filter. Default: 1.
padding (bool|None): if True, add paddings. Default: None
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, sequence_conv
...
...
@@ -2189,8 +2207,6 @@ class SequenceConv(layers.Layer):
is not set, the parameter is initialized with Xavier. Default: None.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns:
Variable: output of sequence_conv
...
...
@@ -2259,15 +2275,16 @@ class RowConv(layers.Layer):
More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
future_context_size (int): Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].
param_attr (ParamAttr): Attributes of parameters, including
name, initializer etc.
act (str): Non-linear activation to be applied to output variable.
name, initializer etc. Default: None.
act (str): Non-linear activation to be applied to output variable. Default: None.
Returns:
the output(Out) is a LodTensor, which supports variable time-length input sequences. The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
the output(Out) is a LodTensor, which supports variable time-length input sequences.
The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
Examples:
.. code-block:: python
...
...
@@ -2321,10 +2338,10 @@ class GroupNorm(layers.Layer):
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
division by zero. Default: 1e-05.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
...
...
@@ -2333,7 +2350,6 @@ class GroupNorm(layers.Layer):
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
...
...
@@ -2450,10 +2466,10 @@ class SpectralNorm(layers.Layer):
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Args:
name_scope (str): See base class.
dim(int): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer, default 0
power_iters(int): number of power iterations to calculate spectral norm, default 1
eps(float): epsilon for numerical stability in calculating norms
name_scope(str): The name of this class.
dim(int): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
power_iters(int): The number of power iterations to calculate spectral norm. Default: 1.
eps(float): The epsilon for numerical stability in calculating norms. Default: 1e-12.
name (str): The name of this layer. It is optional.
Returns:
...
...
@@ -2527,20 +2543,22 @@ class TreeConv(layers.Layer):
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
output_size(int): output feature width
num_filters(int): number of filters, Default 1
max_depth(int): max depth of filters, Default 2
act(str): activation function, Default tanh
param_attr(ParamAttr): the parameter attribute for the filters, Default None
bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None
num_filters(int): number of filters, Default: 1.
max_depth(int): max depth of filters, Default: 2.
act(str): activation function, Default: tanh.
param_attr(ParamAttr): the parameter attribute for the filters, Default: None.
bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default: None.
name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default: None.
Returns:
out(Variable): (Tensor) The feature vector of subtrees. The shape of the output tensor is [max_tree_node_size, output_size, num_filters]. The output tensor could be a new feature vector for next tree convolution layers