From fc0ad9048a51cfb6bb8cb247e1eb6c065b123e6e Mon Sep 17 00:00:00 2001 From: xuwei06 Date: Tue, 13 Jun 2017 23:14:15 -0700 Subject: [PATCH] Repeat layer for column vector --- .../gserver/layers/FeatureMapExpandLayer.cpp | 78 +++++++++++++------ paddle/gserver/tests/test_LayerGrad.cpp | 15 ++-- python/paddle/trainer/config_parser.py | 10 ++- .../paddle/trainer_config_helpers/layers.py | 33 ++++++-- 4 files changed, 97 insertions(+), 39 deletions(-) diff --git a/paddle/gserver/layers/FeatureMapExpandLayer.cpp b/paddle/gserver/layers/FeatureMapExpandLayer.cpp index b3850f543af..8a2ae6b49fc 100644 --- a/paddle/gserver/layers/FeatureMapExpandLayer.cpp +++ b/paddle/gserver/layers/FeatureMapExpandLayer.cpp @@ -40,6 +40,7 @@ namespace paddle { class FeatureMapExpandLayer : public Layer { private: int numFilters_; + bool asRowVector_; public: explicit FeatureMapExpandLayer(const LayerConfig& config) : Layer(config) {} @@ -62,6 +63,7 @@ bool FeatureMapExpandLayer::init(const LayerMap& layerMap, CHECK_EQ(inputLayers_.size(), 1UL); numFilters_ = config_.num_filters(); + asRowVector_ = config_.user_arg() != "as_col_vec"; return true; } @@ -76,16 +78,30 @@ void FeatureMapExpandLayer::forward(PassType passType) { { AsyncGpuBlock asyncGpuBlock; - for (size_t i = 0; i < batchSize; i++) { - MatrixPtr outVTmp = - Matrix::create(outputV->getData() + i * imgSize * numFilters_, - numFilters_, - imgSize, - false, - useGpu_); - MatrixPtr inVTmp = Matrix::create( - inputV->getData() + i * imgSize, 1, imgSize, false, useGpu_); - outVTmp->addRowVector(*inVTmp); + if (asRowVector_) { + for (size_t i = 0; i < batchSize; i++) { + MatrixPtr outVTmp = + Matrix::create(outputV->getData() + i * imgSize * numFilters_, + numFilters_, + imgSize, + false, + useGpu_); + MatrixPtr inVTmp = Matrix::create( + inputV->getData() + i * imgSize, 1, imgSize, false, useGpu_); + outVTmp->addRowVector(*inVTmp); + } + } else { + for (size_t i = 0; i < batchSize; i++) { + MatrixPtr outVTmp = + Matrix::create(outputV->getData() + i * imgSize * numFilters_, + imgSize, + numFilters_, + false, + useGpu_); + MatrixPtr inVTmp = Matrix::create( + inputV->getData() + i * imgSize, imgSize, 1, false, useGpu_); + outVTmp->addColVector(*inVTmp); + } } } /* activation */ { @@ -102,24 +118,38 @@ void FeatureMapExpandLayer::backward(const UpdateCallback& callback) { MatrixPtr outGrad = getOutputGrad(); size_t batchSize = getInput(0).getBatchSize(); int imgSize = inGrad->getWidth(); + /* Do activation */ { + REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str()); + backwardActivation(); + } { AsyncGpuBlock asyncGpuBlock; - for (size_t i = 0; i < batchSize; i++) { - MatrixPtr outGradTmp = - Matrix::create(outGrad->getData() + i * imgSize * numFilters_, - numFilters_, - imgSize, - false, - useGpu_); - MatrixPtr inGradTmp = Matrix::create( - inGrad->getData() + i * imgSize, 1, imgSize, false, useGpu_); - inGradTmp->collectBias(*outGradTmp, 1); + if (asRowVector_) { + for (size_t i = 0; i < batchSize; i++) { + MatrixPtr outGradTmp = + Matrix::create(outGrad->getData() + i * imgSize * numFilters_, + numFilters_, + imgSize, + false, + useGpu_); + MatrixPtr inGradTmp = Matrix::create( + inGrad->getData() + i * imgSize, 1, imgSize, false, useGpu_); + inGradTmp->collectBias(*outGradTmp, 1); + } + } else { + for (size_t i = 0; i < batchSize; i++) { + MatrixPtr outGradTmp = + Matrix::create(outGrad->getData() + i * imgSize * numFilters_, + imgSize, + numFilters_, + false, + useGpu_); + MatrixPtr inGradTmp = Matrix::create( + inGrad->getData() + i * imgSize, imgSize, 1, false, useGpu_); + inGradTmp->sumRows(*outGradTmp, 1, 1); + } } } - /* Do derivation */ { - REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str()); - backwardActivation(); - } } } // namespace paddle. diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index 6adffcf53b7..297756025bc 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -1598,12 +1598,15 @@ TEST(Layer, FeatureMapExpandLayer) { /* paraSize= */ 0}); config.layerConfig.add_inputs(); for (auto useGpu : {false, true}) { - testLayerGrad(config, - "featmap_expand", - /*batch_size*/ 100, - /* trans= */ false, - useGpu, - /* useWeight */ true); + for (auto asRowVec : {false, true}) { + config.layerConfig.set_user_arg(asRowVec ? "as_row_vec" : "as_col_vec"); + testLayerGrad(config, + "featmap_expand", + /*batch_size*/ 100, + /* trans= */ false, + useGpu, + /* useWeight */ true); + } } } diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index fc2e3bbcde0..8e3c3241623 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -2428,7 +2428,13 @@ class ExpandLayer(LayerBase): @config_layer('featmap_expand') class FeatMapExpandLayer(LayerBase): - def __init__(self, name, inputs, device=None, num_filters=None, bias=False): + def __init__(self, + name, + inputs, + device=None, + num_filters=None, + as_row_vector=True, + bias=False): super(FeatMapExpandLayer, self).__init__( name, 'featmap_expand', 0, inputs=inputs, device=device) config_assert( @@ -2437,6 +2443,8 @@ class FeatMapExpandLayer(LayerBase): self.config.num_filters = num_filters else: logger.fatal("FeatMapExpandLayer must specify num_filters.") + if not as_row_vector: + self.config.user_arg = "as_col_vec" self.set_layer_size(self.get_input_layer(0).size * num_filters) diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 2d8ddbb9007..f84b883bc2e 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -1566,13 +1566,21 @@ def expand_layer(input, @wrap_name_default() @layer_support() -def repeat_layer(input, num_repeats, name=None, layer_attr=None): +def repeat_layer(input, + num_repeats, + as_row_vector=True, + name=None, + layer_attr=None): """ - A layer for repeating the input for num_repeats times. This is equivalent - to apply concat_layer() with num_repeats same input. + A layer for repeating the input for num_repeats times. + If as_row_vector: .. math:: - y = [x, x, \cdots, x] + y = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n] + If not as_row_vector: + .. math:: + y = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n] + The example usage is: @@ -1585,6 +1593,12 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None): :param num_repeats: Repeat the input so many times :type num_repeats: int :param name: Layer name. + :param as_row_vector: True for treating input as row vector and repeating + in the column direction. This is equivalent to apply + concat_layer() with num_repeats same input. + False for treating input as column vector and repeating + in the row direction. + :type as_row_vector: bool :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. @@ -1596,6 +1610,7 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None): inputs=[input.name], name=name, num_filters=num_repeats, + as_row_vector=as_row_vector, type=LayerType.FEATURE_MAP_EXPAND_LAYER, **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( @@ -2846,17 +2861,19 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None, Concat sequence a with sequence b. Inputs: - - a = [a1, a2, ..., an] + - a = [a1, a2, ..., am] - b = [b1, b2, ..., bn] - - Note that the length of a and b should be the same. - Output: [a1, b1, a2, b2, ..., an, bn] + Output: [a1, ..., am, b1, ..., bn] + + Note that the above computation is for one sample. Multiple samples are + processed in one batch. The example usage is: .. code-block:: python - concat = seq_concat_layer(a=layer1, b=layer2) + concat = seq_concat_layer(al=layer1, b=layer2) :param name: Layer name. :type name: basestring -- GitLab