From fb7ca48c06b17b2a4cf5f2fee140dd3549cfd7bf Mon Sep 17 00:00:00 2001 From: Thuan Nguyen Date: Tue, 1 May 2018 13:02:46 -0700 Subject: [PATCH] Add image classification unit test using simplified fluid API (#10306) --- .../notest_image_classification_resnet.py | 145 ++++++++++++++++++ .../notest_image_classification_vgg.py | 124 +++++++++++++++ 2 files changed, 269 insertions(+) create mode 100644 python/paddle/fluid/tests/book/image_classification/notest_image_classification_resnet.py create mode 100644 python/paddle/fluid/tests/book/image_classification/notest_image_classification_vgg.py diff --git a/python/paddle/fluid/tests/book/image_classification/notest_image_classification_resnet.py b/python/paddle/fluid/tests/book/image_classification/notest_image_classification_resnet.py new file mode 100644 index 00000000000..5cbfdef91a6 --- /dev/null +++ b/python/paddle/fluid/tests/book/image_classification/notest_image_classification_resnet.py @@ -0,0 +1,145 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import paddle +import paddle.fluid as fluid +import numpy + + +def resnet_cifar10(input, depth=32): + def conv_bn_layer(input, + ch_out, + filter_size, + stride, + padding, + act='relu', + bias_attr=False): + tmp = fluid.layers.conv2d( + input=input, + filter_size=filter_size, + num_filters=ch_out, + stride=stride, + padding=padding, + act=None, + bias_attr=bias_attr) + return fluid.layers.batch_norm(input=tmp, act=act) + + def shortcut(input, ch_in, ch_out, stride): + if ch_in != ch_out: + return conv_bn_layer(input, ch_out, 1, stride, 0, None) + else: + return input + + def basicblock(input, ch_in, ch_out, stride): + tmp = conv_bn_layer(input, ch_out, 3, stride, 1) + tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True) + short = shortcut(input, ch_in, ch_out, stride) + return fluid.layers.elementwise_add(x=tmp, y=short, act='relu') + + def layer_warp(block_func, input, ch_in, ch_out, count, stride): + tmp = block_func(input, ch_in, ch_out, stride) + for i in range(1, count): + tmp = block_func(tmp, ch_out, ch_out, 1) + return tmp + + assert (depth - 2) % 6 == 0 + n = (depth - 2) / 6 + conv1 = conv_bn_layer( + input=input, ch_out=16, filter_size=3, stride=1, padding=1) + res1 = layer_warp(basicblock, conv1, 16, 16, n, 1) + res2 = layer_warp(basicblock, res1, 16, 32, n, 2) + res3 = layer_warp(basicblock, res2, 32, 64, n, 2) + pool = fluid.layers.pool2d( + input=res3, pool_size=8, pool_type='avg', pool_stride=1) + return pool + + +def inference_network(): + classdim = 10 + data_shape = [3, 32, 32] + images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') + net = resnet_cifar10(images, 32) + predict = fluid.layers.fc(input=net, size=classdim, act='softmax') + return predict + + +def train_network(): + predict = inference_network() + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(cost) + accuracy = fluid.layers.accuracy(input=predict, label=label) + return avg_cost, accuracy + + +def train(use_cuda, save_path): + BATCH_SIZE = 128 + EPOCH_NUM = 1 + + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.cifar.train10(), buf_size=128 * 10), + batch_size=BATCH_SIZE) + + test_reader = paddle.batch( + paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) + + def event_handler(event): + if isinstance(event, fluid.EndIteration): + if (event.batch_id % 10) == 0: + avg_cost, accuracy = trainer.test(reader=test_reader) + + print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format( + event.batch_id + 1, avg_cost, accuracy)) + + if accuracy > 0.01: # Low threshold for speeding up CI + trainer.params.save(save_path) + return + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + trainer = fluid.Trainer( + train_network, + optimizer=fluid.optimizer.Adam(learning_rate=0.001), + place=place, + event_handler=event_handler) + trainer.train(train_reader, EPOCH_NUM, event_handler=event_handler) + + +def infer(use_cuda, save_path): + params = fluid.Params(save_path) + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + inferencer = fluid.Inferencer(inference_network, params, place=place) + + # The input's dimension of conv should be 4-D or 5-D. + # Use normilized image pixels as input data, which should be in the range + # [0, 1.0]. + tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32") + results = inferencer.infer({'pixel': tensor_img}) + + print("infer results: ", results) + + +def main(use_cuda): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return + save_path = "image_classification_resnet.inference.model" + train(use_cuda, save_path) + infer(use_cuda, save_path) + + +if __name__ == '__main__': + for use_cuda in (False, True): + main(use_cuda=use_cuda) diff --git a/python/paddle/fluid/tests/book/image_classification/notest_image_classification_vgg.py b/python/paddle/fluid/tests/book/image_classification/notest_image_classification_vgg.py new file mode 100644 index 00000000000..8a6a5ff61a9 --- /dev/null +++ b/python/paddle/fluid/tests/book/image_classification/notest_image_classification_vgg.py @@ -0,0 +1,124 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import paddle +import paddle.fluid as fluid +import numpy + + +def vgg16_bn_drop(input): + def conv_block(input, num_filter, groups, dropouts): + return fluid.nets.img_conv_group( + input=input, + pool_size=2, + pool_stride=2, + conv_num_filter=[num_filter] * groups, + conv_filter_size=3, + conv_act='relu', + conv_with_batchnorm=True, + conv_batchnorm_drop_rate=dropouts, + pool_type='max') + + conv1 = conv_block(input, 64, 2, [0.3, 0]) + conv2 = conv_block(conv1, 128, 2, [0.4, 0]) + conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) + conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) + conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) + + drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) + fc1 = fluid.layers.fc(input=drop, size=4096, act=None) + bn = fluid.layers.batch_norm(input=fc1, act='relu') + drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) + fc2 = fluid.layers.fc(input=drop2, size=4096, act=None) + return fc2 + + +def inference_network(): + classdim = 10 + data_shape = [3, 32, 32] + images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') + net = vgg16_bn_drop(images) + predict = fluid.layers.fc(input=net, size=classdim, act='softmax') + return predict + + +def train_network(): + predict = inference_network() + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(cost) + accuracy = fluid.layers.accuracy(input=predict, label=label) + return avg_cost, accuracy + + +def train(use_cuda, save_path): + BATCH_SIZE = 128 + EPOCH_NUM = 1 + + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.cifar.train10(), buf_size=128 * 10), + batch_size=BATCH_SIZE) + + test_reader = paddle.batch( + paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) + + def event_handler(event): + if isinstance(event, fluid.EndIteration): + if (event.batch_id % 10) == 0: + avg_cost, accuracy = trainer.test(reader=test_reader) + + print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format( + event.batch_id + 1, avg_cost, accuracy)) + + if accuracy > 0.01: # Low threshold for speeding up CI + trainer.params.save(save_path) + return + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + trainer = fluid.Trainer( + train_network, + optimizer=fluid.optimizer.Adam(learning_rate=0.001), + place=place, + event_handler=event_handler) + trainer.train(train_reader, EPOCH_NUM, event_handler=event_handler) + + +def infer(use_cuda, save_path): + params = fluid.Params(save_path) + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + inferencer = fluid.Inferencer(inference_network, params, place=place) + + # The input's dimension of conv should be 4-D or 5-D. + # Use normilized image pixels as input data, which should be in the range + # [0, 1.0]. + tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32") + results = inferencer.infer({'pixel': tensor_img}) + + print("infer results: ", results) + + +def main(use_cuda): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return + save_path = "image_classification_vgg.inference.model" + train(use_cuda, save_path) + infer(use_cuda, save_path) + + +if __name__ == '__main__': + for use_cuda in (False, True): + main(use_cuda=use_cuda) -- GitLab